Do you want to publish a course? Click here

Near-horizon aspects of acceleration radiation by free fall of an atom into a black hole

112   0   0.0 ( 0 )
 Added by Abhijit Chakraborty
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A two-level atom freely falling towards a Schwarzschild black hole was recently shown to detect radiation in the Boulware vacuum in an insightful paper [M. O. Scully et al., Proc. Natl. Acad. Sci. U.S.A. 115, 8131 (2018)]. The two-state atom acts as a dipole detector and its interaction with the field can be modeled using a quantum optics approach. The relative acceleration between the scalar field and the detector causes the atom to detect the radiation. In this paper, we show that this acceleration radiation is driven by the near-horizon physics of the black hole. This insight reinforces the relevance of near-horizon conformal quantum mechanics for all the physics associated with the thermodynamic properties of the black hole. We additionally highlight the conformal aspects of the radiation that is given by a Planck distribution with the Hawking temperature.



rate research

Read More

An atom falling freely into a Kerr black hole in a Boulware-like vacuum is shown to emit radiation with a Planck spectrum at the Hawking temperature. For a cloud of falling atoms with random initial times, the radiation is thermal. The existence of this radiation is due to the acceleration of the vacuum field modes with respect to the falling atom. Its properties can be traced to the dominant role of conformal quantum mechanics (CQM) in the neighborhood of the event horizon. We display this effect for a scalar field, though the acceleration radiation has a universal conformal behavior that is exhibited by all fields in the background of generic black holes.
127 - Davide Fermi 2018
Inspired by some recent works of Tippett-Tsang and Mallary-Khanna-Price, we present a new spacetime model containing closed timelike curves (CTCs). This model is obtained postulating an ad hoc Lorentzian metric on $mathbb{R}^4$, which differs from the Minkowski metric only inside a spacetime region bounded by two concentric tori. The resulting spacetime is topologically trivial, free of curvature singularities and is both time and space orientable; besides, the inner region enclosed by the smaller torus is flat and displays geodesic CTCs. Our model shares some similarities with the time machine of Ori and Soen but it has the advantage of a higher symmetry in the metric, allowing for the explicit computation of a class of geodesics. The most remarkable feature emerging from this computation is the presence of future-oriented timelike geodesics starting from a point in the outer Minkowskian region, moving to the inner spacetime region with CTCs, and then returning to the initial spatial position at an earlier time; this means that time travel to the past can be performed by free fall across our time machine. The amount of time travelled into the past is determined quantitatively; this amount can be made arbitrarily large keeping non-large the proper duration of the travel. An important drawback of the model is the violation of the classical energy conditions, a common feature of many time machines. Other problems emerge from our computations of the required (negative) energy densities and of the tidal accelerations; these are small only if the time machine is gigantic.
We consider dynamics of a quantum scalar field, minimally coupled to classical gravity, in the near-horizon region of a Schwarzschild black-hole. It is described by a static Klein-Gordon operator which in the near-horizon region reduces to a scale invariant Hamiltonian of the system. This Hamiltonian is not essentially self-adjoint, but it admits a one-parameter family of self-adjoint extension. The time-energy uncertainty relation, which can be related to the thermal black-hole mass fluctuations, requires explicit construction of a time operator near-horizon. We present its derivation in terms of generators of the affine group. Matrix elements involving the time operator should be evaluated in the affine coherent state representation.
274 - Hyeong-Chan Kim 2018
We feed a black hole on a self-gravitating radiation and observe what happens during the process. Considering a spherical shell of radiation, we show that the contribution of self-gravity makes the thermodynamic interaction through the bottom of the shell be distinguished from thermodynamic interaction through its top. The growth of a black hole horizon appears to be a sudden jump rather than a sequential increase. We additionally show that much of the entropy will be absorbed into the black hole only at the last moment of the collapse.
The extendibility of spacetime and the existence of weak solutions to the Einstein field equations beyond Cauchy horizons, is a crucial ingredient to examine the limits of General Relativity. Strong Cosmic Censorship serves as a firewall for gravitation by demanding inextendibility of spacetime beyond the Cauchy horizon. For asymptotically flat spacetimes, the predominance of the blueshift instability and the subsequent formation of a mass-inflation singularity at the Cauchy horizon have, so far, substantiated the conjecture. Accelerating black holes, described by the $C-$metric, are exact solutions of the field equations without a cosmological constant, which possess an acceleration horizon with similar causal properties to the cosmological horizon of de Sitter spacetime. Here, by considering linear scalar field perturbations, we provide numerical evidence for the stability of the Cauchy horizon of charged accelerating black holes. In particular, we show that the stability of Cauchy horizons in accelerating charged black holes is connected to quasinormal modes, we discuss the regularity requirement for which weak solutions to the field equations exist at the Cauchy horizon and show that Strong Cosmic Censorship may be violated near extremality.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا