Do you want to publish a course? Click here

A Wideband Polarization Study of Cygnus A with the JVLA. I: The Observations and Data

104   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results from deep, wideband, high spatial and spectral resolution observations of the nearby luminous radio galaxy Cygnus A with the Jansky Very Large Array. The high surface brightness of this source enables detailed polarimetric imaging, providing images at $0.75arcsec$, spanning 2 - 18 GHz, and at 0.30$arcsec$ (6 - 18 GHz). The fractional polarization from 2000 independent lines of sight across the lobes decreases strongly with decreasing frequency, with the eastern lobe depolarizing at higher frequencies than the western lobe. The depolarization shows considerable structure, varying from monotonic to strongly oscillatory. The fractional polarization in general increases with increasing resolution at a given frequency, as expected. However, there are numerous lines of sight with more complicated behavior. We have fitted the $0.3arcsec$ images with a simple model incorporating random, unresolved fluctuations in the cluster magnetic field to determine the high resolution, high-frequency properties of the source and the cluster. From these derived properties, we generate predicted polarization images of the source at lower frequencies, convolved to 0.75$arcsec$. These predictions are remarkably consistent with the observed emission. The observations are consistent with the lower-frequency depolarization being due to unresolved fluctuations on scales $gtrsim$ 300 - 700 pc in the magnetic field and/or electron density superposed on a partially ordered field component. There is no indication in our data of the location of the depolarizing screen or the large-scale field, either, or both of which could be located throughout the cluster, or in a boundary region between the lobes and the cluster.

rate research

Read More

151 - Xiaohui Sun 2021
We report on the continuum and polarization observations of the Cygnus Loop supernova remnant (SNR) conducted by the Five-hundred-meter Aperture Spherical radio Telescope (FAST). FAST observations provide high angular resolution and high sensitivity images of the SNR, which will help to disentangle its nature. We obtained Stokes I, Q and U maps over the frequency range of 1.03 - 1.46 GHz split into channels of 7.63 kHz. The original angular resolution is in the range of ~3 arcmin - ~3.8 arcmin, and we combined all the data at a common resolution of 4 arcmin. The temperature scale of the total intensity and the spectral index from the in-band temperature-temperature plot are consistent with previous observations, which validates the data calibration and map-making procedures. The rms sensitivity for the band-averaged total-intensity map is about 20 mK in brightness temperature, which is at the level of confusion limit. For the first time, we apply rotation measure (RM) synthesis to the Cygnus Loop to obtain the polarization intensity and RM maps. The rms sensitivity for polarization is about 5 mK, far below the total-intensity confusion limit. We also obtained RMs of eight extra-galactic sources, and demonstrate that the wide-band frequency coverage helps to overcome the ambiguity of RM determinations.
We study the jet and counterjet of the powerful classical double FRII radio galaxy Cygnus A as seen in the 5, 8 and 15-GHz radio bands using the highest spatial resolution and signal-to-noise archival data available. We demonstrate that the trace of the radio knots that delineate the jet and counterjet deviates from a straight line and that the inner parts can be satisfactorily fitted with the precession model of Hjellming & Johnston. The parameter values of the precession model fits are all plausible although the jet speed is rather low (< 0.5 c) but, on investigation, found to be consistent with a number of other independent estimates of the jet speed in Cygnus A. We compare the masses and precession periods for sources with known precession and find that for the small number of AGN with precessing jets the precession periods are significantly longer than those for microquasars.
We report new observations of Abell 2256 with the Karl G. Jansky Very Large Array (VLA) at frequencies between 1 and 8 GHz. These observations take advantage of the 2:1 bandwidths available for a single observation to study the spectral index, polarization and Rotation Measure as well as using the associated higher sensitivity to image total intensity features down to ~0.5 resolution. We find the Large Relic, which dominates the cluster, is made up of a complex of filaments which show correlated distributions in intensity, spectral index, and fractional polarization. The Rotation Measure varies across the face of the Large Relic but is not well correlated with the other properties of the source. The shape of individual filaments suggests that the Large Relic is at least 25 kpc thick. We detect a low surface brightness arc connecting the Large Relic to the Halo and other radio structures suggesting a physical connection between these features. The center of the F-complex is dominated by a very steep-spectrum, polarized, ring-like structure, F2, without an obvious optical identification, but the entire F-complex has interesting morphological similarities to the radio structure of NGC1265. Source C, the Long Tail, is unresolved in width near the galaxy core and is </~100pc in diameter there. This morphology suggests either that C is a one-sided jet or that the bending of the tails takes place very near the core, consistent with the parent galaxy having undergone extreme stripping. Overall it seems that many of the unusual phenomena can be understood in the context of Abell 2256 being near the pericenter of a slightly off-axis merger between a cluster and a smaller group. Given the lack of evidence for a strong shock associated with the Large Relic, other models should be considered, such as reconnection between two large-scale magnetic domains.
IC342 is a nearby, late-type spiral galaxy with a young nuclear star cluster surrounded by several giant molecular clouds. The IC342 nuclear region is similar to the Milky Way and therefore provides an interesting comparison. We explore star formation in the nucleus using radio recombination line (RRL) and continuum emission at 5, 6.7, 33, and 35 GHz with the JVLA. These radio tracers are largely unaffected by dust and therefore sensitive to all of the thermal emission from the ionized gas produced by early-type stars. We resolve two components in the RRL and continuum emission within the nuclear region that lie east and west of the central star cluster. These components are associated both spatially and kinematically with two giant molecular clouds. We model these regions in two ways: a simple model consisting of uniform gas radiating in spontaneous emission, or as a collection of many compact HII regions in non-LTE. The multiple HII region model provides a better fit to the data and predicts many dense (ne ~ 10^4-10^5 cm-3), compact (< 0.1 pc) HII regions. For the whole nuclear region as defined by RRL emission, we estimate a hydrogen ionizing rate of NL ~ 2 x 10^{52} s^{-1}, corresponding to equivalent ~ 2000 O6 stars and a star formation rate of ~ 0.15 Msun/year. We detect radio continuum emission west of the southern molecular mini spiral arm, consistent with trailing spiral arms.
The youngest, closest and most compact embedded massive star cluster known excites the supernebula in the nearby dwarf galaxy NGC 5253. It is a crucial target and test case for studying the birth and evolution of the most massive star clusters. We present observations of the ionized gas in this source with high spatial and spectral resolution. The data includes continuum images of free-free emission with ~0.15 resolution made with the JVLA at 15, 22 and 33 GHz, and a full data cube of the [SIV]10.5 micron fine-structure emission line with ~4.5 km/s velocity resolution and 0.3 beam, obtained with TEXES on Gemini North. We find that 1) the ionized gas extends out from the cluster in arms or jets, and 2) the ionized gas comprises two components offset both spatially and in velocity. We discuss mechanisms that may have created the observed velocity field; possibilities include large-scale jets or a subcluster falling onto the main source.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا