Do you want to publish a course? Click here

ALMA High-frequency Long-baseline Campaign in 2017: A Comparison of the Band-to-band and In-band Phase Calibration Techniques and Phase-calibrator Separation Angles

127   0   0.0 ( 0 )
 Added by Luke Maud
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Atacama Large millimeter/submillimeter Array (ALMA) obtains spatial resolutions of 15 to 5 milli-arcsecond (mas) at 275-950GHz (0.87-0.32mm) with 16km baselines. Calibration at higher-frequencies is challenging as ALMA sensitivity and quasar density decrease. The Band-to-Band (B2B) technique observes a detectable quasar at lower frequency that is closer to the target, compared to one at the target high-frequency. Calibration involves a nearly constant instrumental phase offset between the frequencies and the conversion of the temporal phases to the target frequency. The instrumental offsets are solved with a differential-gain-calibration (DGC) sequence, consisting of alternating low and high frequency scans of strong quasar. Here we compare B2B and in-band phase referencing for high-frequencies ($>$289GHz) using 2-15km baselines and calibrator separation angles between $sim$0.68 and $sim$11.65$^{circ}$. The analysis shows that: (1) DGC for B2B produces a coherence loss $<$7% for DGC phase RMS residuals $<$30$^{circ}$. (2) B2B images using close calibrators ( $<$1.67$^{circ}$ ) are superior to in-band images using distant ones ( $>$2.42$^{circ}$ ). (3) For more distant calibrators, B2B is preferred if it provides a calibrator $sim$2$^{circ}$ closer than the best in-band calibrator. (4) Decreasing image coherence and poorer image quality occur with increasing phase calibrator separation angle because of uncertainties in the antenna positions and sub-optimal phase referencing. (5) To achieve $>$70% coherence for long-baseline (16 km) band 7 (289GHz) observations, calibrators should be within $sim$4$^{circ}$ of the target.



rate research

Read More

In 2017, an Atacama Large Millimeter/submillimeter Array (ALMA) high-frequency long baseline campaign was organized to test image capabilities with baselines up to 16 km at submillimeter (submm) wavelengths. We investigated image qualities using ALMA receiver Bands 7, 8, 9, and 10 (285-875 GHz) by adopting band-to-band (B2B) phase referencing in which a phase calibrator is tracked at a lower frequency. For B2B phase referencing, it is expected that a closer phase calibrator to a target can be used, comparing to standard in-band phase referencing. In the first step, it is ensured that an instrumental phase offset difference between low- and high-frequency Bands can be removed using a differential gain calibration in which a phase calibrator is certainly detected while frequency switching. In the next step, comparative experiments are arranged to investigate the image quality between B2B and in-band phase referencing with phase calibrators at various separation angles. In the final step, we conducted long baseline imaging tests for a quasar at 289 GHz in Band 7 and 405 GHz in Band 8 and complex structure sources of HL Tau and VY CMa at ~670 GHz in Band 9. The B2B phase referencing was successfully applied, allowing us to achieve an angular resolution of 14x11 and 10x8 mas for HL Tau and VY CMa, respectively. There is a high probability of finding a low-frequency calibrator within 5.4 deg in B2B phase referencing, bright enough to use an 8 s scan length combined with a 7.5 GHz bandwidth.
High-frequency long-baseline experiments with the Atacama Large Millimeter/submillimeter Array were organized to test the high angular resolution imaging capabilities in the submillimeter wave regime using baselines up to 16 km. Four experiments were conducted, two Band 7 (289 GHz) and two Band 8 (405 GHz) observations. Phase correction using band-to-band (B2B) phase referencing was used with a phase calibrator only 0.7deg away observed in Band 3 (96 GHz) and Band 4 (135 GHz), respectively. In Band 8, we achieved the highest resolution of 14x11 mas. We compared the synthesis images of the target quasar using 20 and 60 s switching cycle times in the phase referencing. In Band 7, the atmosphere had good stability in phase rms (<0.5 rad over 2 minutes), and there was little difference in image coherence between the 20 and 60 s switching cycle times. One Band 8 experiment was conducted under a worse phase rms condition (>1 rad over 2 minutes), which led to a significantly reduced coherence when using the 60 s switching cycle time. One of our four experiments indicates that the residual phase rms error after phase referencing can be reduced to 0.16 rad at 289 GHz in using the 20 s switching cycle time. Such conditions would meet the phase correction requirement of image coherence of >70% in Band 10, assuming a similar phase calibrator separation angle, emphasizing the need for such B2B phase referencing observing at high frequencies.
119 - G. A. Fuller 2016
We discuss the science drivers for ALMA Band 2 which spans the frequency range from 67 to 90 GHz. The key science in this frequency range are the study of the deuterated molecules in cold, dense, quiescent gas and the study of redshifted emission from galaxies in CO and other species. However, Band 2 has a range of other applications which are also presented. The science enabled by a single receiver system which would combine ALMA Bands 2 and 3 covering the frequency range 67 to 116 GHz, as well as the possible doubling of the IF bandwidth of ALMA to 16 GHz, are also considered.
We examine data from the Murchison Widefield Array (MWA) in the frequency range 72 -- 102 MHz for a field-of-view that serendipitously contained the interstellar object Oumuamua on 2017 November 28. Observations took place with time resolution of 0.5 s and frequency resolution of 10 kHz. %This observation was undertaken for another purpose but due to the MWAs extremely large field-of-view, Oumuamua was serendipitously observed simultaneously. Based on the interesting but highly unlikely suggestion that Oumuamua is an interstellar spacecraft, due to some unusual orbital and morphological characteristics, we examine our data for signals that might indicate the presence of intelligent life associated with Oumuamua. We searched our radio data for: 1) impulsive narrow-band signals; 2) persistent narrow-band signals; and 3) impulsive broadband signals. We found no such signals with non-terrestrial origins and make estimates of the upper limits on Equivalent Isotropic Radiated Power (EIRP) for these three cases of approximately 7 kW, 840 W, and 100 kW, respectively. These transmitter powers are well within the capabilities of human technologies, and are therefore plausible for alien civilizations. While the chances of positive detection in any given Search for Extraterrestrial Intelligence (SETI) experiment are vanishingly small, the characteristics of new generation telescopes such as the MWA (and in the future, the Square Kilometre Array) make certain classes of SETI experiment easy, or even a trivial by-product of astrophysical observations. This means that the future costs of SETI experiments are very low, allowing large target lists to partially balance the low probability of a positive detection.
A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to ~15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from September to late November 2014, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long baselines achieved angular resolutions as fine as 19 mas at ~350 GHz. Observing with ALMA on baselines of up to 15 km is now possible, and opens up new parameter space for submm astronomy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا