No Arabic abstract
We consider a free surface thin film placed on a thermally conductive substrate and exposed to an external heat source in a setup where the heat absorption depends on the local film thickness. Our focus is on modeling film evolution while the film is molten. The evolution of the film modifies local heat flow, which in turn may influence the film surface evolution through thermal variation of the films material properties. Thermal conductivity of the substrate plays an important role in determining the heat flow and the temperature field in the evolving film and in the substrate itself. In order to reach a tractable formulation, we use asymptotic analysis to develop a novel thermal model that is accurate, computationally efficient, and that accounts for the heat flow in both the in-plane and out-of plane directions. We apply this model to metal films of nanoscale thickness exposed to heating and melting by laser pulses, a setup commonly used for self and directed assembly of various metal geometries via dewetting while the films are in the liquid phase. We find that thermal effects play an important role, and in particular that the inclusion of temperature dependence in the metal viscosity modifies the time scale of the evolution significantly. On the other hand, in the considered setup the Marangoni (thermocapillary) effect turns out to be insignificant.
Recent experiments of thin films flowing down a vertical fiber with varying nozzle diameters present a wealth of new dynamics that illustrate the need for more advanced theory. We present a detailed analysis using a full lubrication model that includes slip boundary conditions, nonlinear curvature terms, and a film stabilization term. This study brings to focus the presence of a stable liquid layer playing an important role in the full dynamics. We propose a combination of these physical effects to explain the observed velocity and stability of traveling droplets in the experiments and their transition to isolated droplets. This is also supported by stability analysis of the traveling wave solution of the model.
A thin liquid film with non-zero curvature at its free surface spontaneously flows to reach a flat configuration, a process driven by Laplace pressure gradients and resisted by the liquids viscosity. Inspired by recent progresses on the dynamics of liquid droplets on soft substrates, we here study the relaxation of a viscous film supported by an elastic foundation. Experiments involve thin polymer films on elastomeric substrates, where the dynamics of the liquid-air interface is monitored using atomic force microscopy. A theoretical model that describes the coupled evolution of the solid-liquid and the liquid-air interfaces is also provided. In this soft-levelling configuration, Laplace pressure gradients not only drive the flow, but they also induce elastic deformations on the substrate that affect the flow and the shape of the liquid-air interface itself. This process represents an original example of elastocapillarity that is not mediated by the presence of a contact line. We discuss the impact of the elastic contribution on the levelling dynamics and show the departure from the classical self-similarities and power laws observed for capillary levelling on rigid substrates.
We apply a previously developed asymptotic model (J. Fluid. Mech. 915, A133 (2021)) to study instabilities of free surface films of nanometric thickness on thermally conductive substrates in two and three spatial dimensions. While the specific focus is on metal films exposed to laser heating, the model itself applies to any setup involving films on the nanoscale whose material parameters are temperature-dependent. For the particular case of metal films heated from above, an important aspect is that the considered heating is volumetric, since the absorption length of the applied laser pulse is comparable to the film thickness. In such a setup, absorption of thermal energy and film evolution are closely correlated and must be considered self-consistently. The asymptotic model allows for a significant simplification, which is crucial from both modeling and computational points of view, since it allows for asymptotically correct averaging of the temperature over the film thickness. We find that the properties of the thermally conductive substrate -- in particular its thickness and rate of heat loss -- play a critical role in controlling the film temperature and dynamics. The film evolution is simulated using efficient GPU-based simulations which, when combined with the developed asymptotic model, allow for fully nonlinear time-dependent simulations in large three-dimensional computational domains. In addition to uncovering the role of the substrate and its properties in determining the film evolution, one important finding is that, at least for the considered range of material parameters, strong in-plane thermal diffusion in the film results in negligible spatial variations of temperature, and the film evolution is predominantly influenced by temporal variation of film viscosity and surface tension (dictated by average film temperature), as well as thermal conductivity of the substrate.
Highly textured NdFeAs(O,F) thin films have been grown on ion beam assisted deposition (IBAD)-MgO/Y2O3/Hastelloy substrates by molecular beam epitaxy. The oxypnictide coated conductors showed a superconducting transition temperature (Tc) of 43 K with a self-field critical current density (Jc) of 7.0 x 104 A/cm2 at 5 K, more than 20 times higher than powder-in-tube processed SmFeAs(O,F) wires. Albeit higher Tc as well as better crystalline quality than Co-doped BaFe2As2 coated conductors, in-field Jc of NdFeAs(O,F) was lower than that of Co-doped BaFe2As2. These results suggest that grain boundaries in oxypnictides reduce Jc significantly compared to that in Co-doped BaFe2As2 and, hence biaxial texture is necessary for high Jc.
We study a model for a thin liquid film dewetting from a periodic heterogeneous substrate (template). The amplitude and periodicity of a striped template heterogeneity necessary to obtain a stable periodic stripe pattern, i.e. pinning, are computed. This requires a stabilization of the longitudinal and transversal modes driving the typical coarsening dynamics during dewetting of a thin film on a homogeneous substrate. If the heterogeneity has a larger spatial period than the critical dewetting mode, weak heterogeneities are sufficient for pinning. A large region of coexistence between coarsening dynamics and pinning is found.