Do you want to publish a course? Click here

Encoder-decoder neural network for solving the nonlinear Fokker-Planck-Landau collision operator in XGC

103   0   0.0 ( 0 )
 Added by Marco Miller
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

An encoder-decoder neural network has been used to examine the possibility for acceleration of a partial integro-differential equation, the Fokker-Planck-Landau collision operator. This is part of the governing equation in the massively parallel particle-in-cell code, XGC, which is used to study turbulence in fusion energy devices. The neural network emphasizes physics-inspired learning, where it is taught to respect physical conservation constraints of the collision operator by including them in the training loss, along with the L2 loss. In particular, network architectures used for the computer vision task of semantic segmentation have been used for training. A penalization method is used to enforce the soft constraints of the system and integrate error in the conservation properties into the loss function. During training, quantities representing the density, momentum, and energy for all species of the system is calculated at each configuration vertex, mirroring the procedure in XGC. This simple training has produced a median relative loss, across configuration space, on the order of 10E-04, which is low enough if the error is of random nature, but not if it is of drift nature in timesteps. The run time for the Picard iterative solver of the operator scales as order n squared, where n is the number of plasma species. As the XGC1 code begins to attack problems including a larger number of species, the collision operator will become expensive computationally, making the neural network solver even more important, since the training only scales as n. A wide enough range of collisionality is considered in the training data to ensure the full domain of collision physics is captured. An advanced technique to decrease the losses further will be discussed, which will be subject of a subsequent report. Eventual work will include expansion of the network to include multiple plasma species.



rate research

Read More

577 - I. G. Abel 2009
A new analytically and numerically manageable model collision operator is developed specifically for turbulence simulations. The like-particle collision operator includes both pitch-angle scattering and energy diffusion and satisfies the physical constraints required for collision operators: it conserves particles, momentum and energy, obeys Boltzmanns H-theorem (collisions cannot decrease entropy), vanishes on a Maxwellian, and efficiently dissipates small-scale structure in the velocity space. The process of transforming this collision operator into the gyroaveraged form for use in gyrokinetic simulations is detailed. The gyroaveraged model operator is shown to have more suitable behavior at small scales in phase space than previously suggested models. A model operator for electron-ion collisions is also presented.
108 - R. Jorge , B. J. Frei , P. Ricci 2019
A gyrokinetic Coulomb collision operator is derived, which is particularly useful to describe the plasma dynamics at the periphery region of magnetic confinement fusion devices. The derived operator is able to describe collisions occurring in distribution functions arbitrarily far from equilibrium with variations on spatial scales at and below the particle Larmor radius. A multipole expansion of the Rosenbluth potentials is used in order to derive the dependence of the full Coulomb collision operator on the particle gyroangle. The full Coulomb collision operator is then expressed in gyrocentre phase-space coordinates, and a closed formula for its gyroaverage in terms of the moments of the gyrocenter distribution function in a form ready to be numerically implemented is provided. Furthermore, the collision operator is projected onto a Hermite-Laguerre velocity space polynomial basis and expansions in the small electron-to-ion mass ratio are provided.
A set of key properties for an ideal dissipation scheme in gyrokinetic simulations is proposed, and implementation of a model collision operator satisfying these properties is described. This operator is based on the exact linearized test-particle collision operator, with approximations to the field-particle terms that preserve conservation laws and an H-Theorem. It includes energy diffusion, pitch-angle scattering, and finite Larmor radius effects corresponding to classical (real-space) diffusion. The numerical implementation in the continuum gyrokinetic code GS2 is fully implicit and guarantees exact satisfaction of conservation properties. Numerical results are presented showing that the correct physics is captured over the entire range of collisionalities, from the collisionless to the strongly collisional regimes, without recourse to artificial dissipation.
We obtain exact results for fractional equations of Fokker-Planck type using evolution operator method. We employ exact forms of one-sided Levy stable distributions to generate a set of self-reproducing solutions. Explicit cases are reported and studied for various fractional order of derivatives, different initial conditions, and for differe
The Landau form of the Fokker-Planck equation is the gold standard for plasmas dominated by small angle collisions, however its $Order{N^2}$ work complexity has limited its practicality. This paper extends previous work on a fully conservative finite element method for this Landau collision operator with adaptive mesh refinement, optimized for vector machines, by porting the algorithm to the Cuda programming model with implementations in Cuda and Kokkos, and by reporting results within a Vlasov-Maxwell-Landau model of a plasma thermal quench. With new optimizations of the Landau kernel and ports of this kernel, the sparse matrix assembly and algebraic solver to Cuda, the cost of a well resolved Landau collision time advance is shown to be practical for kinetic plasma applications. This fully implicit Landau time integrator and the plasma quench model is available in the PETSc (Portable, Extensible, Toolkit for Scientific computing) numerical library.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا