Neutron optical test of completeness of quantum root-mean-square errors


Abstract in English

One of the major problems in quantum physics has been to generalize the classical root-mean-square error to quantum measurements to obtain an error measure satisfying both soundness (to vanish for any accurate measurements) and completeness (to vanish only for accurate measurements). A noise-operator based error measure has been commonly used for this purpose, but it has turned out incomplete. Recently, Ozawa proposed a new definition for a noise-operator based error measure to be both sound and complete. Here, we present a neutron optical demonstration for the completeness of the new error measure for both projective (or sharp) as well as generalized (or unsharp) measurements.

Download