Do you want to publish a course? Click here

Exploring Level Blending across Platformers via Paths and Affordances

293   0   0.0 ( 0 )
 Added by Anurag Sarkar
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Techniques for procedural content generation via machine learning (PCGML) have been shown to be useful for generating novel game content. While used primarily for producing new content in the style of the game domain used for training, recent works have increasingly started to explore methods for discovering and generating content in novel domains via techniques such as level blending and domain transfer. In this paper, we build on these works and introduce a new PCGML approach for producing novel game content spanning multiple domains. We use a new affordance and path vocabulary to encode data from six different platformer games and train variational autoencoders on this data, enabling us to capture the latent level space spanning all the domains and generate new content with varying proportions of the different domains.



rate research

Read More

Procedural content generation via machine learning (PCGML) has demonstrated its usefulness as a content and game creation approach, and has been shown to be able to support human creativity. An important facet of creativity is combinational creativity or the recombination, adaptation, and reuse of ideas and concepts between and across domains. In this paper, we present a PCGML approach for level generation that is able to recombine, adapt, and reuse structural patterns from several domains to approximate unseen domains. We extend prior work involving example-driven Binary Space Partitioning for recombining and reusing patterns in multiple domains, and incorporate Variational Autoencoders (VAEs) for generating unseen structures. We evaluate our approach by blending across $7$ domains and subsets of those domains. We show that our approach is able to blend domains together while retaining structural components. Additionally, by using different groups of training domains our approach is able to generate both 1) levels that reproduce and capture features of a target domain, and 2) levels that have vastly different properties from the input domain.
Previous work explored blending levels from existing games to create levels for a new game that mixes properties of the original games. In this paper, we use Variational Autoencoders (VAEs) for improving upon such techniques. VAEs are artificial neural networks that learn and use latent representations of datasets to generate novel outputs. We train a VAE on level data from Super Mario Bros. and Kid Icarus, enabling it to capture the latent space spanning both games. We then use this space to generate level segments that combine properties of levels from both games. Moreover, by applying evolutionary search in the latent space, we evolve level segments satisfying specific constraints. We argue that these affordances make the VAE-based approach especially suitable for co-creative level design and compare its performance with similar generative models like the GAN and the VAE-GAN.
Prior research has shown variational autoencoders (VAEs) to be useful for generating and blending game levels by learning latent representations of existing level data. We build on such models by exploring the level design affordances and applications enabled by conditional VAEs (CVAEs). CVAEs augment VAEs by allowing them to be trained using labeled data, thus enabling outputs to be generated conditioned on some input. We studied how increased control in the level generation process and the ability to produce desired outputs via training on labeled game level data could build on prior PCGML methods. Through our results of training CVAEs on levels from Super Mario Bros., Kid Icarus and Mega Man, we show that such models can assist in level design by generating levels with desired level elements and patterns as well as producing blended levels with desired combinations of games.
Reinforcement learning algorithms usually assume that all actions are always available to an agent. However, both people and animals understand the general link between the features of their environment and the actions that are feasible. Gibson (1977) coined the term affordances to describe the fact that certain states enable an agent to do certain actions, in the context of embodied agents. In this paper, we develop a theory of affordances for agents who learn and plan in Markov Decision Processes. Affordances play a dual role in this case. On one hand, they allow faster planning, by reducing the number of actions available in any given situation. On the other hand, they facilitate more efficient and precise learning of transition models from data, especially when such models require function approximation. We establish these properties through theoretical results as well as illustrative examples. We also propose an approach to learn affordances and use it to estimate transition models that are simpler and generalize better.
A common strategy in modern learning systems is to learn a representation that is useful for many tasks, a.k.a. representation learning. We study this strategy in the imitation learning setting for Markov decision processes (MDPs) where multiple experts trajectories are available. We formulate representation learning as a bi-level optimization problem where the outer optimization tries to learn the joint representation and the inner optimization encodes the imitation learning setup and tries to learn task-specific parameters. We instantiate this framework for the imitation learning settings of behavior cloning and observation-alone. Theoretically, we show using our framework that representation learning can provide sample complexity benefits for imitation learning in both settings. We also provide proof-of-concept experiments to verify our theory.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا