Accelerated Nonlinear Model Predictive Control by Exploiting Saturation


Abstract in English

We present an approach for accelerating nonlinear model predictive control. If the current optimal input signal is saturated, also the optimal signals in subsequent time steps often are. We propose to use the open-loop optimal input signals whenever the first and some subsequent input signals are saturated. We only solve the next optimal control problem, when a non-saturated signal is encountered, or the end of the horizon is reached. In this way, we can save a significant number of NLPs to be solved while on the other hand keep the performance loss small. Furthermore, the NMPC is reactivated in time when it comes to controlling the system safely to its reference.

Download