Do you want to publish a course? Click here

Entropic Unmixing in Nematic Blends of Semiflexible Polymers

261   0   0.0 ( 0 )
 Added by Arash Nikoubashman
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Binary mixtures of semiflexible polymers with the same chain length but different persistence lengths separate into two coexisting different nematic phases when the osmotic pressure of the lyotropic solution is varied. Molecular Dynamics simulations and Density Functional Theory predict phase diagrams either with a triple point, where the isotropic phase coexists with two nematic phases, or a critical point of unmixing within the nematic mixture. The difference in locally preferred bond angles between the constituents drives this unmixing without any attractive interactions between monomers.



rate research

Read More

The nematic ordering in semiflexible polymers with contour length $L$ exceeding their persistence length $ell_p$ is described by a confinement of the polymers in a cylinder of radius $r_{eff}$ much larger than the radius $r_rho$, expected from the respective concentration of the solution. Large scale Molecular Dynamics simulations combined with Density Functional Theory are used to locate the Isotropic-Nematic ($I-N$)-transition and to validate this cylindrical confinement. Anomalous fluctuations, due to chain deflections from neighboring chains in the nematic phase are proposed. Considering deflections as collective excitations in the nematically ordered phase of semiflexible polymers elucidates the origins of shortcomings in the description of the $I-N$ transition by existing theories.
Using a recently developed bead-spring model for semiflexible polymers that takes into account their natural extensibility, we report an efficient algorithm to simulate the dynamics for polymers like double-stranded DNA (dsDNA) in the absence of hydrodynamic interactions. The dsDNA is modelled with one bead-spring element per basepair, and the polymer dynamics is described by the Langevin equation. The key to efficiency is that we describe the equations of motion for the polymer in terms of the amplitudes of the polymers fluctuation modes, as opposed to the use of the physical positions of the beads. We show that, within an accuracy tolerance level of $5%$ of several key observables, the model allows for single Langevin time steps of $approx1.6$, 8, 16 and 16 ps for a dsDNA model-chain consisting of 64, 128, 256 and 512 basepairs (i.e., chains of 0.55, 1.11, 2.24 and 4.48 persistence lengths) respectively. Correspondingly, in one hour, a standard desktop computer can simulate 0.23, 0.56, 0.56 and 0.26 ms of these dsDNA chains respectively. We compare our results to those obtained from other methods, in particular, the (inextensible discretised) WLC model. Importantly, we demonstrate that at the same level of discretisation, i.e., when each discretisation element is one basepair long, our algorithm gains about 5-6 orders of magnitude in the size of time steps over the inextensible WLC model. Further, we show that our model can be mapped one-on-one to a discretised version of the extensible WLC model; implying that the speed-up we achieve in our model must hold equally well for the latter. We also demonstrate the use of the method by simulating efficiently the tumbling behaviour of a dsDNA segment in a shear flow.
We explore the effect of an attractive interaction between parallel-aligned polymers, which are perpendicularly grafted on a substrate. Such an attractive interaction could be due to, e.g., reversible cross-links. The competition between permanent grafting favoring a homogeneous state of the polymer brush and the attraction, which tends to induce in-plane collapse of the aligned polymers, gives rise to an instability of the homogeneous phase to a bundled state. In this latter state the in-plane translational symmetry is spontaneously broken and the density is modulated with a finite wavelength, which is set by the length scale of transverse fluctuations of the grafted polymers. We analyze the instability for two models of aligned polymers: directed polymers with a line tension and weakly bending chains with a bending stiffness.
Semiflexible polymer models are widely used as a paradigm to understand structural phases in biomolecules including folding of proteins. Since stable knots are not so common in real proteins, the existence of stable knots in semiflexible polymers has not been explored much. Here, via extensive replica exchange Monte Carlo simulation we investigate the same for a bead-stick and a bead-spring homopolymer model that covers the whole range from flexible to stiff. We establish the fact that the presence of stable knotted phases in the phase diagram is dependent on the ratio $r_b/r_{rm{min}}$ where $r_b$ is the equilibrium bond length and $r_{rm{min}}$ is the distance for the strongest nonbonded contacts. Our results provide evidence for both models that if the ratio $r_b/r_{rm{min}}$ is outside a small window around unity then depending on the bending stiffness one always encounters stable knotted phases along with the usual frozen and bent-like structures at low temperatures. These findings prompt us to conclude that knots are generic stable phases in semiflexible polymers.
We present a theoretical framework for the linear and nonlinear visco-elastic properties of reversibly crosslinked networks of semiflexible polymers. In contrast to affine models where network strain couples to the polymer end-to-end distance, in our model strain rather serves to locally distort the network structure. This induces bending modes in the polymer filaments, the properties of wich are slaved to the surrounding network structure. Specifically, we investigate the frequency-dependent linear rheology, in particular in combination with crosslink binding/unbinding processes. We also develop schematic extensions to describe the nonlinear response during creep measurements as well as during constant-strainrate ramps.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا