Do you want to publish a course? Click here

Zone pAth Construction (ZAC) based Approaches for Effective Real-Time Ridesharing

79   0   0.0 ( 0 )
 Added by Meghna Lowalekar
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Real-time ridesharing systems such as UberPool, Lyft Line, GrabShare have become hugely popular as they reduce the costs for customers, improve per trip revenue for drivers and reduce traffic on the roads by grouping customers with similar itineraries. The key challenge in these systems is to group the right requests to travel together in the right available vehicles in real-time, so that the objective (e.g., requests served, revenue or delay) is optimized. This challenge has been addressed in existing work by: (i) generating as many relevant feasible (with respect to the available delay for customers) combinations of requests as possible in real-time; and then (ii) optimizing assignment of the feasible request combinations to vehicles. Since the number of request combinations increases exponentially with the increase in vehicle capacity and number of requests, unfortunately, such approaches have to employ ad hoc heuristics to identify a subset of request combinations for assignment. Our key contribution is in developing approaches that employ zone (abstraction of individual locations) paths instead of request combinations. Zone paths allow for generation of significantly more relevant combinations (in comparison to ad hoc heuristics) in real-time than competing approaches due to two reasons: (i) Each zone path can typically represent multiple request combinations; (ii) Zone paths are generated using a combination of offline and online methods. Specifically, we contribute both myopic (ridesharing assignment focussed on current requests only) and non-myopic (ridesharing assignment considers impact on expected future requests) approaches that employ zone paths. In our experimental results, we demonstrate that our myopic approach outperforms (with respect to both objective and runtime) the current best myopic approach for ridesharing on both real-world and synthetic datasets.



rate research

Read More

In multi-capacity ridesharing, multiple requests (e.g., customers, food items, parcels) with different origin and destination pairs travel in one resource. In recent years, online multi-capacity ridesharing services (i.e., where assignments are made online) like Uber-pool, foodpanda, and on-demand shuttles have become hugely popular in transportation, food delivery, logistics and other domains. This is because multi-capacity ridesharing services benefit all parties involved { the customers (due to lower costs), the drivers (due to higher revenues) and the matching platforms (due to higher revenues per vehicle/resource). Most importantly these services can also help reduce carbon emissions (due to fewer vehicles on roads). Online multi-capacity ridesharing is extremely challenging as the underlying matching graph is no longer bipartite (as in the unit-capacity case) but a tripartite graph with resources (e.g., taxis, cars), requests and request groups (combinations of requests that can travel together). The desired matching between resources and request groups is constrained by the edges between requests and request groups in this tripartite graph (i.e., a request can be part of at most one request group in the final assignment). While there have been myopic heuristic approaches employed for solving the online multi-capacity ridesharing problem, they do not provide any guarantees on the solution quality. To that end, this paper presents the first approach with bounds on the competitive ratio for online multi-capacity ridesharing (when resources rejoin the system at their initial location/depot after serving a group of requests).
In order to utilize solar imagery for real-time feature identification and large-scale data science investigations of solar structures, we need maps of the Sun where phenomena, or themes, are labeled. Since solar imagers produce observations every few minutes, it is not feasible to label all images by hand. Here, we compare three machine learning algorithms performing solar image classification using extreme ultraviolet and Hydrogen-alpha images: a maximum likelihood model assuming a single normal probability distribution for each theme from Rigler et al. (2012), a maximum-likelihood model with an underlying Gaussian mixtures distribution, and a random forest model. We create a small database of expert-labeled maps to train and test these algorithms. Due to the ambiguity between the labels created by different experts, a collaborative labeling is used to include all inputs. We find the random forest algorithm performs the best amongst the three algorithms. The advantages of this algorithm are best highlighted in: comparison of outputs to hand-drawn maps; response to short-term variability; and tracking long-term changes on the Sun. Our work indicates that the next generation of solar image classification algorithms would benefit significantly from using spatial structure recognition, compared to only using spectral, pixel-by-pixel brightness distributions.
Large-scale ride-sharing systems combine real-time dispatching and routing optimization over a rolling time horizon with a model predictive control (MPC) component that relocates idle vehicles to anticipate the demand. The MPC optimization operates over a longer time horizon to compensate for the inherent myopic nature of the real-time dispatching. These longer time horizons are beneficial for the quality of relocation decisions but increase computational complexity. Consequently, the ride-sharing operators are often forced to use a relatively short time horizon. To address this computational challenge, this paper proposes a hybrid approach that combines machine learning and optimization. The machine-learning component learns the optimal solution to the MPC on the aggregated level to overcome the sparsity and high-dimensionality of the solution. The optimization component transforms the machine-learning prediction back to the original granularity through a tractable transportation model. As a consequence, the original NP-hard MPC problem is reduced to a polynomial time prediction and optimization, which allows the ride-sharing operators to consider a longer time horizon. Experimental results show that the hybrid approach achieves significantly better service quality than the MPC optimization in terms of average rider waiting time, due to its ability to model a longer horizon.
Detection of anomalous behaviors in data centers is crucial to predictive maintenance and data safety. With data centers, we mean any computer network that allows users to transmit and exchange data and information. In particular, we focus on the Tier-1 data center of the Italian Institute for Nuclear Physics (INFN), which supports the high-energy physics experiments at the Large Hadron Collider (LHC) in Geneva. The center provides resources and services needed for data processing, storage, analysis, and distribution. Log records in the data center is a stochastic and non-stationary phenomenon in nature. We propose a real-time approach to monitor and classify log records based on sliding time windows, and a time-varying evolving fuzzy-rule-based classification model. The most frequent log pattern according to a control chart is taken as the normal system status. We extract attributes from time windows to gradually develop and update an evolving Gaussian Fuzzy Classifier (eGFC) on the fly. The real-time anomaly monitoring system has to provide encouraging results in terms of accuracy, compactness, and real-time operation.
This paper shows how knowledge representation and reasoning techniques can be used to support organizations in complying with the GDPR, that is, the new European data protection regulation. This work is carried out in a European H2020 project called SPECIAL. Data usage policies, the consent of data subjects, and selected fragments of the GDPR are encoded in a fragment of OWL2 called PL (policy language); compliance checking and policy validation are reduced to subsumption checking and concept consistency checking. This work proposes a satisfactory tradeoff between the expressiveness requirements on PL posed by the GDPR, and the scalability requirements that arise from the use cases provided by SPECIALs industrial partners. Real-time compliance checking is achieved by means of a specialized reasoner, called PLR, that leverages knowledge compilation and structural subsumption techniques. The performance of a prototype implementation of PLR is analyzed through systematic experiments, and compared with the performance of other important reasoners. Moreover, we show how PL and PLR can be extended to support richer ontologies, by means of import-by-query techniques. PL and its integration with OWL2s profiles constitute new tractable fragments of OWL2. We prove also some negative results, concerning the intractability of unrestricted reasoning in PL, and the limitations posed on ontology import.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا