Do you want to publish a course? Click here

vContact: Private WiFi-based Contact Tracing with Virus Lifespan

239   0   0.0 ( 0 )
 Added by Guanyao Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Covid-19 is primarily spread through contact with the virus which may survive on surfaces with lifespan of more than hours. To curb its spread, it is hence of vital importance to detect and quarantine those who have been in contact with the virus for sustained period of time, the so-called close contacts. In this work, we study, for the first time, automatic contact detection when the virus has a lifespan. Leveraging upon the ubiquity of WiFi signals, we propose a novel, private, and fully distributed WiFi-based approach called vContact. Users installing an app continuously scan WiFi and store its hashed IDs. Given a confirmed case, the signals of the major places he/she visited are then uploaded to a server and matched with the stored signals of users to detect contact. vContact is not based on phone pairing, and no information of any other users is stored locally. The confirmed case does not need to have installed the app for it to work properly. As WiFi data are sampled sporadically, we propose efficient signal processing approaches and similarity metric to align and match signals of any time. We conduct extensive indoor and outdoor experiments to evaluate the performance of vContact. Our results demonstrate that vContact is efficient and robust for contact detection. The precision and recall of contact detection are high (in the range of 50-90%) for close contact proximity (2m). Its performance is robust with respect to signal lengths (AP numbers) and phone heterogeneity. By implementing vContact as an app, we present a case study to demonstrate the validity of our design in notifying its users their exposure to virus with lifespan.



rate research

Read More

In this work we describe a token-based solution to Contact Tracing via Distributed Point Functions (DPF) and, more generally, Function Secret Sharing (FSS). The key idea behind the solution is that FSS natively supports secure keyword search on raw sets of keywords without a need for processing the keyword sets via a data structure for set membership. Furthermore, the FSS functionality enables adding up numerical payloads associated with multiple matches without additional interaction. These features make FSS an attractive tool for lightweight privacy-preserving searching on a database of tokens belonging to infected individuals.
Contact tracing is an essential tool in containing infectious diseases such as COVID-19. Many countries and research groups have launched or announced mobile apps to facilitate contact tracing by recording contacts between users with some privacy considerations. Most of the focus has been on using random tokens, which are exchanged during encounters and stored locally on users phones. Prior systems allow users to search over released tokens in order to learn if they have recently been in the proximity of a user that has since been diagnosed with the disease. However, prior approaches do not provide end-to-end privacy in the collection and querying of tokens. In particular, these approaches are vulnerable to either linkage attacks by users using token metadata, linkage attacks by the server, or false reporting by users. In this work, we introduce Epione, a lightweight system for contact tracing with strong privacy protections. Epione alerts users directly if any of their contacts have been diagnosed with the disease, while protecting the privacy of users contacts from both central services and other users, and provides protection against false reporting. As a key building block, we present a new cryptographic tool for secure two-party private set intersection cardinality (PSI-CA), which allows two parties, each holding a set of items, to learn the intersection size of two private sets without revealing intersection items. We specifically tailor it to the case of large-scale contact tracing where clients have small input sets and the servers database of tokens is much larger.
In this paper, we propose a new privacy-preserving, automated contact tracing system, ACOUSTIC-TURF, to fight COVID-19 using acoustic signals sent from ubiquitous mobile devices. At a high level, ACOUSTIC-TURF adaptively broadcasts inaudible ultrasonic signals with randomly generated IDs in the vicinity. Simultaneously, the system receives other ultrasonic signals sent from nearby (e.g., 6 feet) users. In such a system, individual user IDs are not disclosed to others and the system can accurately detect encounters in physical proximity with 6-foot granularity. We have implemented a prototype of ACOUSTIC-TURF on Android and evaluated its performance in terms of acoustic-signal-based encounter detection accuracy and power consumption at different ranges and under various occlusion scenarios. Experimental results show that ACOUSTIC-TURF can detect multiple contacts within a 6-foot range for mobile phones placed in pockets and outside pockets. Furthermore, our acoustic-signal-based system achieves greater precision than wireless-signal-based approaches when contact tracing is performed through walls. ACOUSTIC-TURF correctly determines that people on opposite sides of a wall are not in contact with one another, whereas the Bluetooth-based approaches detect nonexistent contacts among them.
The infection rate of COVID-19 and lack of an approved vaccine has forced governments and health authorities to adopt lockdowns, increased testing, and contact tracing to reduce the spread of the virus. Digital contact tracing has become a supplement to the traditional manual contact tracing process. However, although there have been a number of digital contact tracing apps proposed and deployed, these have not been widely adopted owing to apprehensions surrounding privacy and security. In this paper, we propose a blockchain-based privacy-preserving contact tracing protocol, Did I Meet You (DIMY), that provides full-lifecycle data privacy protection on the devices themselves as well as on the back-end servers, to address most of the privacy concerns associated with existing protocols. We have employed Bloom filters to provide efficient privacy-preserving storage, and have used the Diffie-Hellman key exchange for secret sharing among the participants. We show that DIMY provides resilience against many well known attacks while introducing negligible overheads. DIMYs footprint on the storage space of clients devices and back-end servers is also significantly lower than other similar state of the art apps.
During a pandemic, contact tracing is an essential tool to drive down the infection rate within a population. To accelerate the laborious manual contact tracing process, digital contact tracing (DCT) tools can track contact events transparently and privately by using the sensing and signaling capabilities of the ubiquitous cell phone. However, an effective DCT must not only preserve user privacy but also augment the existing manual contact tracing process. Indeed, not every member of a population may own a cell phone or have a DCT app installed and enabled. We present KHOVID to fulfill the combined goal of manual contact-tracing interoperability and DCT user privacy. At KHOVIDs core is a privacy-friendly mechanism to encode user trajectories using geolocation data. Manual contact tracing data can be integrated through the same geolocation format. The accuracy of the geolocation data from DCT is improved using Bluetooth proximity detection, and we propose a novel method to encode Bluetooth ephemeral IDs. This contribution describes the detailed design of KHOVID; presents a prototype implementation including an app and server software; and presents a validation based on simulation and field experiments. We also compare the strengths of KHOVID with other, earlier proposals of DCT.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا