No Arabic abstract
Recent discovery of superconductivity in the doped infinite-layer nickelates has renewed interest in understanding the nature of high-temperature superconductivity more generally. The low-energy electronic structure of the parent compound NdNiO$_{2}$, the role of electronic correlations in driving superconductivity, and the possible relationship betweeen the cuprates and the nickelates are still open questions. Here, by comparing LaNiO$_2$ and NdNiO$_2$ systematically within a parameter-free density functional framework, all-electron first-principles framework, we reveal the role Nd 4$f$ electrons in shaping the ground state of pristine NdNiO$_2$. Strong similarities are found between the electronic structures of LaNiO$_2$ and NdNiO$_2$, except for the effects of the 4$f$-electrons. Hybridization between the Nd 4$f$ and Ni 3$d$ orbitals is shown to significantly modify the Fermi surfaces of various magnetic states. In contrast, the competition between the magnetically ordered phases depends mainly on the gaps in the Ni $d_{x2-y2}$ band, so that the ground state in LaNiO$_2$ and NdNiO$_2$ turns out to be striking similarity to that of the cuprates. The $d-p$ band-splitting is found to be much larger while the intralayer 3$d$ ion-exchange coupling is smaller in the nickelates compared to the cuprates. Our estimated value of the on-site Hubbard $U$ is similar to that in the cuprates, but the value of the Hunds coupling $J_H$ is found to be sensitive to the Nd magnetic moment. The exchange coupling $J$ in NdNiO$_2$ is only half as large as in the curpates, which may explain why $T_c$ in the nickelates is half as large as the cuprates.
By means of resonant inelastic x-ray scattering at the Cu L$_3$ edge, we measured the spin wave dispersion along $langle$100$rangle$ and $langle$110$rangle$ in the undoped cuprate Ca$_2$CuO$_2$Cl$_2$. The data yields a reliable estimate of the superexchange parameter $J$ = 135 $pm$ 4 meV using a classical spin-1/2 2D Heisenberg model with nearest-neighbor interactions and including quantum fluctuations. Including further exchange interactions increases the estimate to $J$ = 141 meV. The 40 meV dispersion between the magnetic Brillouin zone boundary points (1/2,,0) and (1/4,,1/4) indicates that next-nearest neighbor interactions in this compound are intermediate between the values found in La$_{2}$CuO$_4$ and Sr$_2$CuO$_2$Cl$_2$. Owing to the low-$Z$ elements composing Ca$_2$CuO$_2$Cl$_2$, the present results may enable a reliable comparison with the predictions of quantum many-body calculations, which would improve our understanding of the role of magnetic excitations and of electronic correlations in cuprates.
Ternary iron phosphide EuFe$_2$P$_2$ with ThCr$_2$Si$_2$-type structure has been systematically studied by the measurements of crystal structure, magnetization, M{o}ssbauer effect, transport properties and specific heat. The structural refinement result confirms no direct P-P covalent bonding. The M{o}ssbauer spectra indicate no magnetic moment for the Fe atoms and, that the Eu ions are divalent in the whole temperatures, carrying local moments of $S$=7/2. The Eu$^{2+}$ spins order ferromagnetically at $T_C$=29.5 K, followed by a possible helimagnetic ordering below $T_{HM}$=26 K, where the Eu$^{2+}$ moments tilt a little from the c-axis. External magnetic field increases $T_C$ gradually, but suppresses $T_{HM}$ rapidly. (Magneto)resistivity data indicate characteristic dense Kondo behaviour above the Curie temperature. The result is discussed in terms of the interplay between intersite RKKY and intrasite Kondo interactions.
The heat carriers responsible for the unexpectedly large thermal Hall conductivity of the cuprate Mott insulator La$_2$CuO$_4$ were recently shown to be phonons. However, the mechanism by which phonons in cuprates acquire chirality in a magnetic field is still unknown. Here, we report a similar thermal Hall conductivity in two cuprate Mott insulators with significantly different crystal structures and magnetic orders - Nd$_2$CuO$_4$ and Sr$_2$CuO$_2$Cl$_2$ - and show that two potential mechanisms can be excluded - the scattering of phonons by rare-earth impurities and by structural domains. Our comparative study further reveals that orthorhombicity, apical oxygens, the tilting of oxygen octahedra and the canting of spins out of the CuO$_2$ planes are not essential to the mechanism of chirality. Our findings point to a chiral mechanism coming from a coupling of acoustic phonons to the intrinsic excitations of the CuO$_2$ planes.
We present a comprehensive study of the phonon dispersion in an underdoped, superconducting Ca$_{2-x}$CuO$_2$Cl$_2$ crystal. We interpret the results using lattice dynamical calculations based on a shell model, and we compare the results, to other hole-doped cuprates, in particular to the ones isomorphic to La$_{2-x}$Sr$_x$CuO$_4$ (LSCO). We found that an anomalous dip in the Cu-O bond stretching dispersion develops in oxychlorides with a simultaneous marked broadening of the mode. The broadening is maximum at $approx (pi / (2a) ~ 0 ~ 0)$ that corresponds to the charge-modulations propagation vector. Our analysis also suggests that screening effects in calculations may cause an apparent cosine-shaped bending of the Cu-O bond-stretching dispersion along both the ($q$ 0 0) and ($q$ $q$ 0) directions, that is not observed on the data close to optimal doping. This observation suggests that the discrepancy between experimental data and textit{ab-initio} calculations on this mode originates from an overestimation of the doping effects on the mode.
The magnetic ground state of the Eu$^{2+}$ moments in a series of Eu(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ single crystals grown from the Sn flux has been investigated in detail by neutron diffraction measurements. Combined with the results from the macroscopic properties (resistivity, magnetic susceptibility and specific heat) measurements, a phase diagram describing how the Eu magnetic order evolves with Co doping in Eu(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ is established. The ground-state magnetic structure of the Eu$^{2+}$ spins is found to develop from the A-type antiferromagnetic (AFM) order in the parent compound, via the A-type canted AFM structure with some net ferromagnetic (FM) moment component along the crystallographic $mathit{c}$ direction at intermediate Co doping levels, finally to the pure FM order at relatively high Co doping levels. The ordering temperature of Eu declines linearly at first, reaches the minimum value of 16.5(2) K around $mathit{x}$ = 0.100(4), and then reverses upwards with further Co doping. The doping-induced modification of the indirect Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between the Eu$^{2+}$ moments, which is mediated by the conduction $mathit{d}$ electrons on the (Fe,Co)As layers, as well as the change of the strength of the direct interaction between the Eu$^{2+}$ and Fe$^{2+}$ moments, might be responsible for the change of the magnetic ground state and the ordering temperature of the Eu sublattice. In addition, for Eu(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ single crystals with 0.10 $leqslant$ $mathit{x}$ $leqslant$ 0.18, strong ferromagnetism from the Eu sublattice is well developed in the superconducting state, where a spontaneous vortex state is expected to account for the compromise between the two competing phenomena.