No Arabic abstract
Given $n$ polynomials $p_1, dots, p_n$ of degree at most $n$ with $|p_i|_infty le 1$ for $i in [n]$, we show there exist signs $x_1, dots, x_n in {-1,1}$ so that [Big|sum_{i=1}^n x_i p_iBig|_infty < 30sqrt{n}, ] where $|p|_infty := sup_{|x| le 1} |p(x)|$. This result extends the Rudin-Shapiro sequence, which gives an upper bound of $O(sqrt{n})$ for the Chebyshev polynomials $T_1, dots, T_n$, and can be seen as a polynomial analogue of Spencers six standard deviations theorem.
We show how polynomial mappings of degree k from a union of disjoint intervals onto [-1,1] generate a countable number of special cases of a certain generalization of the Chebyshev Polynomials. We also derive a new expression for these generalized Chebyshev Polynomials for any number of disjoint intervals from which the coefficients of x^n can be found explicitly in terms of the end points and the recurrence coefficients. We find that this representation is useful for specializing to the polynomial mapping cases for small k where we will have algebraic expressions for the recurrence coefficients in terms of the end points. We study in detail certain special cases of the polynomials for small k and prove a theorem concerning the location of the zeroes of the polynomials. We also derive an expression for the discriminant for the case of two intervals that is valid for any configuration of the end points.
Orbit functions of a simple Lie group/Lie algebra L consist of exponential functions summed up over the Weyl group of L. They are labeled by the highest weights of irreducible finite dimensional representations of L. They are of three types: C-, S- and E-functions. Orbit functions of the Lie algebras An, or equivalently, of the Lie group SU(n+1), are considered. First, orbit functions in two different bases - one orthonormal, the other given by the simple roots of SU(n) - are written using the isomorphism of the permutation group of n elements and the Weyl group of SU(n). Secondly, it is demonstrated that there is a one-to-one correspondence between classical Chebyshev polynomials of the first and second kind, and C- and $S$-functions of the simple Lie group SU(2). It is then shown that the well-known orbit functions of SU(n) are straightforward generalizations of Chebyshev polynomials to n-1 variables. Properties of the orbit functions provide a wealth of properties of the polynomials. Finally, multivariate exponential functions are considered, and their connection with orbit functions of SU(n) is established.
A word $sigma=sigma_1...sigma_n$ over the alphabet $[k]={1,2,...,k}$ is said to be {em smooth} if there are no two adjacent letters with difference greater than 1. A word $sigma$ is said to be {em smooth cyclic} if it is a smooth word and in addition satisfies $|sigma_n-sigma_1|le 1$. We find the explicit generating functions for the number of smooth words and cyclic smooth words in $[k]^n$, in terms of {it Chebyshev polynomials of the second kind}. Additionally, we find explicit formula for the numbers themselves, as trigonometric sums. These lead to immediate asymptotic corollaries. We also enumerate smooth necklaces, which are cyclic smooth words that are not equivalent up to rotation.
Let a(n) be the Sterns diatomic sequence, and let x1,...,xr be the distances between successive 1s in the binary expansion of the (odd) positive integer n. We show that a(n) is obtained by evaluating generalized Chebyshev polynomials when the variables are given the values x1+1, ..., xr+1, and we derive a formula expressing the same polynomials in terms of sets of increasing integers of alternating parity. We also show that a(n) = Det(Ir + Mr), where Ir is the rxr identity matrix, and Mr is the rxr matrix that has x1,...,xr along the main diagonal, then all 1s just above and below the main diagonal, and all the other entries are 0.
Trace estimators allow to approximate thermodynamic equilibrium observables with astonishing accuracy. A prominent representative is the finite-temperature Lanczos method (FTLM) which relies on a Krylov space expansion of the exponential describing the Boltzmann weights. Here we report investigations of an alternative approach which employs Chebyshev polynomials. This method turns out to be also very accurate in general, but shows systematic inaccuracies at low temperatures that can be traced back to an improper behavior of the approximated density of states with and without smoothing kernel. Applications to archetypical quantum spin systems are discussed as examples.