Do you want to publish a course? Click here

Physically Embedded Planning Problems: New Challenges for Reinforcement Learning

157   0   0.0 ( 0 )
 Added by Arthur Guez
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recent work in deep reinforcement learning (RL) has produced algorithms capable of mastering challenging games such as Go, chess, or shogi. In these works the RL agent directly observes the natural state of the game and controls that state directly with its actions. However, when humans play such games, they do not just reason about the moves but also interact with their physical environment. They understand the state of the game by looking at the physical board in front of them and modify it by manipulating pieces using touch and fine-grained motor control. Mastering complicated physical systems with abstract goals is a central challenge for artificial intelligence, but it remains out of reach for existing RL algorithms. To encourage progress towards this goal we introduce a set of physically embedded planning problems and make them publicly available. We embed challenging symbolic tasks (Sokoban, tic-tac-toe, and Go) in a physics engine to produce a set of tasks that require perception, reasoning, and motor control over long time horizons. Although existing RL algorithms can tackle the symbol



rate research

Read More

We present an end-to-end, model-based deep reinforcement learning agent which dynamically attends to relevant parts of its state, in order to plan and to generalize better out-of-distribution. The agents architecture uses a set representation and a bottleneck mechanism, forcing the number of entities to which the agent attends at each planning step to be small. In experiments with customized MiniGrid environments with different dynamics, we observe that the design allows agents to learn to plan effectively, by attending to the relevant objects, leading to better out-of-distribution generalization.
Reinforcement learning (RL) has been widely applied to game-playing and surpassed the best human-level performance in many domains, yet there are few use-cases in industrial or commercial settings. We introduce OR-Gym, an open-source library for developing reinforcement learning algorithms to address operations research problems. In this paper, we apply reinforcement learning to the knapsack, multi-dimensional bin packing, multi-echelon supply chain, and multi-period asset allocation model problems, as well as benchmark the RL solutions against MILP and heuristic models. These problems are used in logistics, finance, engineering, and are common in many business operation settings. We develop environments based on prototypical models in the literature and implement various optimization and heuristic models in order to benchmark the RL results. By re-framing a series of classic optimization problems as RL tasks, we seek to provide a new tool for the operations research community, while also opening those in the RL community to many of the problems and challenges in the OR field.
Real-world decision-making tasks are generally complex, requiring trade-offs between multiple, often conflicting, objectives. Despite this, the majority of research in reinforcement learning and decision-theoretic planning either assumes only a single objective, or that multiple objectives can be adequately handled via a simple linear combination. Such approaches may oversimplify the underlying problem and hence produce suboptimal results. This paper serves as a guide to the application of multi-objective methods to difficult problems, and is aimed at researchers who are already familiar with single-objective reinforcement learning and planning methods who wish to adopt a multi-objective perspective on their research, as well as practitioners who encounter multi-objective decision problems in practice. It identifies the factors that may influence the nature of the desired solution, and illustrates by example how these influence the design of multi-objective decision-making systems for complex problems.
318 - Dieqiao Feng , Carla P. Gomes , 2020
Despite significant progress in general AI planning, certain domains remain out of reach of current AI planning systems. Sokoban is a PSPACE-complete planning task and represents one of the hardest domains for current AI planners. Even domain-specific specialized search methods fail quickly due to the exponential search complexity on hard instances. Our approach based on deep reinforcement learning augmented with a curriculum-driven method is the first one to solve hard instances within one day of training while other modern solvers cannot solve these instances within any reasonable time limit. In contrast to prior efforts, which use carefully handcrafted pruning techniques, our approach automatically uncovers domain structure. Our results reveal that deep RL provides a promising framework for solving previously unsolved AI planning problems, provided a proper training curriculum can be devised.
Model-based planning is often thought to be necessary for deep, careful reasoning and generalization in artificial agents. While recent successes of model-based reinforcement learning (MBRL) with deep function approximation have strengthened this hypothesis, the resulting diversity of model-based methods has also made it difficult to track which components drive success and why. In this paper, we seek to disentangle the contributions of recent methods by focusing on three questions: (1) How does planning benefit MBRL agents? (2) Within planning, what choices drive performance? (3) To what extent does planning improve generalization? To answer these questions, we study the performance of MuZero (Schrittwieser et al., 2019), a state-of-the-art MBRL algorithm with strong connections and overlapping components with many other MBRL algorithms. We perform a number of interventions and ablations of MuZero across a wide range of environments, including control tasks, Atari, and 9x9 Go. Our results suggest the following: (1) Planning is most useful in the learning process, both for policy updates and for providing a more useful data distribution. (2) Using shallow trees with simple Monte-Carlo rollouts is as performant as more complex methods, except in the most difficult reasoning tasks. (3) Planning alone is insufficient to drive strong generalization. These results indicate where and how to utilize planning in reinforcement learning settings, and highlight a number of open questions for future MBRL research.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا