No Arabic abstract
The Quantizer problem is a tessellation optimisation problem where point configurations are identified such that the Voronoi cells minimise the second moment of the volume distribution. While the ground state (optimal state) in 3D is almost certainly the body-centered cubic lattice, disordered and effectively hyperuniform states with energies very close to the ground state exist that result as stable states in an evolution through the geometric Lloyds algorithm [Klatt et al. Nat. Commun., 10, 811 (2019)]. When considered as a statistical mechanics problem at finite temperature, the same system has been termed the Voronoi Liquid by [Ruscher et al. EPL 112, 66003 (2015)]. Here we investigate the cooling behaviour of the Voronoi liquid with a particular view to the stability of the effectively hyperuniform disordered state. As a confirmation of the results by Ruscher et al., we observe, by both molecular dynamics and Monte Carlo simulations, that upon slow quasi-static equilibrium cooling, the Voronoi liquid crystallises from a disordered configuration into the body-centered cubic configuration. By contrast, upon sufficiently fast non-equilibrium cooling (and not just in the limit of a maximally fast quench) the Voronoi liquid adopts similar states as the effectively hyperuniform inherent structures identified by Klatt et al. and prevents the ordering transition into a BCC ordered structure. This result is in line with the geometric intuition that the geometric Lloyds algorithm corresponds to a type of fast quench.
We study the quantum version of the random $K$-Satisfiability problem in the presence of the external magnetic field $Gamma$ applied in the transverse direction. We derive the replica-symmetric free energy functional within static approximation and the saddle-point equation for the order parameter: the distribution $P[h(m)]$ of functions of magnetizations. The order parameter is interpreted as the histogram of probability distributions of individual magnetizations. In the limit of zero temperature and small transverse fields, to leading order in $Gamma$ magnetizations $m approx 0$ become relevant in addition to purely classical values of $m approx pm 1$. Self-consistency equations for the order parameter are solved numerically using Quasi Monte Carlo method for K=3. It is shown that for an arbitrarily small $Gamma$ quantum fluctuations destroy the phase transition present in the classical limit $Gamma=0$, replacing it with a smooth crossover transition. The implications of this result with respect to the expected performance of quantum optimization algorithms via adiabatic evolution are discussed. The replica-symmetric solution of the classical random $K$-Satisfiability problem is briefly revisited. It is shown that the phase transition at T=0 predicted by the replica-symmetric theory is of continuous type with atypical critical exponents.
The transitional and well-developed regimes of turbulent shear flows exhibit a variety of remarkable scaling laws that are only now beginning to be systematically studied and understood. In the first part of this article, we summarize recent progress in understanding the friction factor of turbulent flows in rough pipes and quasi-two-dimensional soap films, showing how the data obey a two-parameter scaling law known as roughness-induced criticality, and exhibit power-law scaling of friction factor with Reynolds number that depends on the precise form of the nature of the turbulent cascade. These results hint at a non-equilibrium fluctuation-dissipation relation that applies to turbulent flows. The second part of this article concerns the lifetime statistics in smooth pipes around the transition, showing how the remarkable super-exponential scaling with Reynolds number reflects deep connections between large deviation theory, extreme value statistics, directed percolation and the onset of coexistence in predator-prey ecosystems. Both these phenomena reflect the way in which turbulence can be fruitfully approached as a problem in non-equilibrium statistical mechanics.
Liquid-liquid phase transition (LLPT) in supercooled water has been a long-standing controversial issue. We show simulation results of real stable first-order phase transitions between high and low density liquid (HDL and LDL)-like structures in confined supercooled water in both positive and negative pressures. These topological phase transitions originate from H-bond network ordering in molecular rotational mode after molecular exchanges are frozen. It is explained by the order parameter-dependent free energy change upon mixing liquid-like and ice-like moieties of H-bond orientations which is governed by their two- to many-body interactions. This unexplored purely H-bond orientation-driven topological phase gives mid-density and stable intermediate mixed-phase with high and low density structures. The phase diagram of supercooled water demonstrate the second and third critical points of water.
The kinetic energy of a freely cooling granular gas decreases as a power law $t^{-theta}$ at large times $t$. Two theoretical conjectures exist for the exponent $theta$. One based on ballistic aggregation of compact spherical aggregates predicts $theta= 2d/(d+2)$ in $d$ dimensions. The other based on Burgers equation describing anisotropic, extended clusters predicts $theta=d/2$ when $2le d le 4$. We do extensive simulations in three dimensions to find that while $theta$ is as predicted by ballistic aggregation, the cluster statistics and velocity distribution differ from it. Thus, the freely cooling granular gas fits to neither the ballistic aggregation or a Burgers equation description.
Recently, new thermodynamic inequalities have been obtained, which set bounds on the quadratic fluctuations of intensive observables of statistical mechanical systems in terms of the Bogoliubov - Duhamel inner product and some thermal average values. It was shown that several well-known inequalities in equilibrium statistical mechanics emerge as special cases of these results. On the basis of the spectral representation, lower and upper bounds on the one-sided fidelity susceptibility were derived in analogous terms. Here, these results are reviewed and presented in a unified manner. In addition, the spectral representation of the symmetric two-sided fidelity susceptibility is derived, and it is shown to coincide with the one-sided case. Therefore, both definitions imply the same lower and upper bounds on the fidelity susceptibility.