Predictions for production of $rm{^3_Lambda H}$ and $rm{{^3_{overline Lambda}overline H}}$ in isobaric $^{96}_{44}$Ru+$^{96}_{44}$Ru and $^{96}_{40}$Zr+$^{96}_{40}$Zr collisions at $sqrt{s_{rm{NN}}}$ = 200 GeV


Abstract in English

The production of $rm{^3_Lambda H}$ and $rm{{^3_{overline Lambda}overline H}}$, as well as $rm{^3H}$, $rm{{^3overline H}}$, $rm{^3He}$, and $rm{{^3overline {He}}}$ are studied in central collisions of isobars $^{96}_{44}$Ru+$^{96}_{44}$Ru and $^{96}_{40}$Zr+$^{96}_{40}$Zr at $sqrt{s_{rm{NN}}}=200$ GeV, using the dynamically constrained phase-space coalescence model and the {footnotesize PACIAE} model with chiral magnetic effect. The yield, yield ratio, coalescence parameters, and strangeness population factor of (anti-)hypertriton and (anti-)nuclei produced in isobaric $^{96}_{44}$Ru+$^{96}_{44}$Ru and $^{96}_{40}$Zr+$^{96}_{40}$Zr collisions are predicted. The (anti-)hypertriton and (anti-)nuclei production is found to be insensitive to the chiral magnetic effects. Experimental data of Cu+Cu, Au+Au and Pb+Pb collisions from RHIC, LHC, and the results of {footnotesize PACIAE+DCPC} model are presented in the results for comparison.

Download