No Arabic abstract
By incorporating delayed epidemic information and self-restricted travel behavior into the SIS model, we have investigated the coupled effects of timely and accurate epidemic information and peoples sensitivity to the epidemic information on contagion. In the population with only local random movement, whether the epidemic information is delayed or not has no effect on the spread of the epidemic. Peoples high sensitivity to the epidemic information leads to their risk aversion behavior and the spread of the epidemic is suppressed. In the population with only global person-to-person movement, timely and accurate epidemic information helps an individual cut off the connections with the infected in time and the epidemic is brought under control in no time. A delay in the epidemic information leads to an individuals misjudgment of who has been infected and who has not, which in turn leads to rapid progress and a higher peak of the epidemic. In the population with coexistence of local and global movement, timely and accurate epidemic information and peoples high sensitivity to the epidemic information play an important role in curbing the epidemic. A theoretical analysis indicates that peoples misjudgment caused by the delayed epidemic information leads to a higher encounter probability between the susceptible and the infected and peoples self-restricted travel behavior helps reduce such an encounter probability. A functional relation between the ratio of infected individuals and the susceptible-infected encounter probability has been found.
Albeit epidemic models have evolved into powerful predictive tools for the spread of diseases and opinions, most assume memoryless agents and independent transmission channels. We develop an infection mechanism that is endowed with memory of past exposures and simultaneously incorporates the joint effect of multiple infectious sources. Analytic equations and simulations of the susceptible-infected-susceptible model in unstructured substrates reveal the emergence of an additional phase that separates the usual healthy and endemic ones. This intermediate phase shows fundamentally distinct characteristics, and the system exhibits either excitability or an exotic variant of bistability. Moreover, the transition to endemicity presents hybrid aspects. These features are the product of an intricate balance between two memory modes and indicate that non-Markovian effects significantly alter the properties of spreading processes.
Most models of epidemic spread, including many designed specifically for COVID-19, implicitly assume that social networks are undirected, i.e., that the infection is equally likely to spread in either direction whenever a contact occurs. In particular, this assumption implies that the individuals most likely to spread the disease are also the most likely to receive it from others. Here, we review results from the theory of random directed graphs which show that many important quantities, including the reproductive number and the epidemic size, depend sensitively on the joint distribution of in- and out-degrees (risk and spread), including their heterogeneity and the correlation between them. By considering joint distributions of various kinds we elucidate why some types of heterogeneity cause a deviation from the standard Kermack-McKendrick analysis of SIR models, i.e., so called mass-action models where contacts are homogeneous and random, and some do not. We also show that some structured SIR models informed by complex contact patterns among types of individuals (age or activity) are simply mixtures of Poisson processes and tend not to deviate significantly from the simplest mass-action model. Finally, we point out some possible policy implications of this directed structure, both for contact tracing strategy and for interventions designed to prevent superspreading events. In particular, directed networks have a forward and backward version of the classic friendship paradox -- forward links tend to lead to individuals with high risk, while backward links lead to individuals with high spread -- such that a combination of both forward and backward contact tracing is necessary to find superspreading events and prevent future cascades of infection.
The success of a vaccination program is crucially dependent on its adoption by a critical fraction of the population, as the resulting herd immunity prevents future outbreaks of an epidemic. However, the effectiveness of a campaign can engender its own undoing if individuals choose to not get vaccinated in the belief that they are protected by herd immunity. Although this may appear to be an optimal decision, based on a rational appraisal of cost and benefits to the individual, it exposes the population to subsequent outbreaks. We investigate if voluntary vaccination can emerge in a an integrated model of an epidemic spreading on a social network of rational agents that make informed decisions whether to be vaccinated. The information available to each agent includes the prevalence of the disease in their local network neighborhood and/or globally in the population, as well as the fraction of their neighbors that are protected against the disease. Crucially, the payoffs governing the decision of agents evolve with disease prevalence, resulting in the co-evolution of vaccine uptake behavior with the spread of the contagion. The collective behavior of the agents responding to local prevalence can lead to a significant reduction in the final epidemic size, particularly for less contagious diseases having low basic reproduction number $R_0$. Near the epidemic threshold ($R_0approx1$) the use of local prevalence information can result in a dichotomous response in final vaccine coverage. The implications of our results suggest the nature of information used by individuals is a critical factor determining the success of public health intervention schemes that involve mass vaccination.
Contagion, broadly construed, refers to anything that can spread infectiously from peer to peer. Examples include communicable diseases, rumors, misinformation, ideas, innovations, bank failures, and electrical blackouts. Sometimes, as in the 1918 Spanish flu epidemic, a contagion mutates at some point as it spreads through a network. Here, using a simple susceptible-infected (SI) model of contagion, we explore the downstream impact of a single mutation event. Assuming that this mutation occurs at a random node in the contact network, we calculate the distribution of the number of descendants, $d$, downstream from the initial Patient Zero mutant. We find that the tail of the distribution decays as $d^{-2}$ for complete graphs, random graphs, small-world networks, networks with block-like structure, and other infinite-dimensional networks. This prediction agrees with the observed statistics of memes propagating and mutating on Facebook, and is expected to hold for other effectively infinite-dimensional networks, such as the global human contact network. In a wider context, our approach suggests a possible starting point for a mesoscopic theory of contagion. Such a theory would focus on the paths traced by a spreading contagion, thereby furnishing an intermediate level of description between that of individual nodes and the total infected population. We anticipate that contagion pathways will hold valuable lessons, given their role as the conduits through which single mutations, innovations, or failures can sweep through a network as a whole.
In this work, we address a multicoupled dynamics on complex networks with tunable structural segregation. Specifically, we work on a networked epidemic spreading under a vaccination campaign with agents in favor and against the vaccine. Our results show that such coupled dynamics exhibits a myriad of phenomena such as nonequilibrium transitions accompanied by bistability. Besides we observe the emergence of an intermediate optimal segregation level where the community structure enhances negative opinions over vaccination but counterintuitively hinders - rather than favoring - the global disease spreading. Thus, our results hint vaccination campaigns should avoid policies that end up segregating excessively anti-vaccine groups so that they effectively work as echo chambers in which individuals look to confirmation without jeopardising the safety of the whole population.