Do you want to publish a course? Click here

Solving Challenging Dexterous Manipulation Tasks With Trajectory Optimisation and Reinforcement Learning

402   0   0.0 ( 0 )
 Added by Henry Charlesworth
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Training agents to autonomously learn how to use anthropomorphic robotic hands has the potential to lead to systems capable of performing a multitude of complex manipulation tasks in unstructured and uncertain environments. In this work, we first introduce a suite of challenging simulated manipulation tasks that current reinforcement learning and trajectory optimisation techniques find difficult. These include environments where two simulated hands have to pass or throw objects between each other, as well as an environment where the agent must learn to spin a long pen between its fingers. We then introduce a simple trajectory optimisation that performs significantly better than existing methods on these environments. Finally, on the challenging PenSpin task we combine sub-optimal demonstrations generated through trajectory optimisation with off-policy reinforcement learning, obtaining performance that far exceeds either of these approaches individually, effectively solving the environment. Videos of all of our results are available at: https://dexterous-manipulation.github.io/



rate research

Read More

Learning dexterous manipulation in high-dimensional state-action spaces is an important open challenge with exploration presenting a major bottleneck. Although in many cases the learning process could be guided by demonstrations or other suboptimal experts, current RL algorithms for continuous action spaces often fail to effectively utilize combinations of highly off-policy expert data and on-policy exploration data. As a solution, we introduce Relative Entropy Q-Learning (REQ), a simple policy iteration algorithm that combines ideas from successful offline and conventional RL algorithms. It represents the optimal policy via importance sampling from a learned prior and is well-suited to take advantage of mixed data distributions. We demonstrate experimentally that REQ outperforms several strong baselines on robotic manipulation tasks for which suboptimal experts are available. We show how suboptimal experts can be constructed effectively by composing simple waypoint tracking controllers, and we also show how learned primitives can be combined with waypoint controllers to obtain reference behaviors to bootstrap a complex manipulation task on a simulated bimanual robot with human-like hands. Finally, we show that REQ is also effective for general off-policy RL, offline RL, and RL from demonstrations. Videos and further materials are available at sites.google.com/view/rlfse.
Dexterous manipulation has been a long-standing challenge in robotics. Recently, modern model-free RL has demonstrated impressive results on a number of problems. However, complex domains like dexterous manipulation remain a challenge for RL due to the poor sample complexity. To address this, current approaches employ expert demonstrations in the form of state-action pairs, which are difficult to obtain for real-world settings such as learning from videos. In this work, we move toward a more realistic setting and explore state-only imitation learning. To tackle this setting, we train an inverse dynamics model and use it to predict actions for state-only demonstrations. The inverse dynamics model and the policy are trained jointly. Our method performs on par with state-action approaches and considerably outperforms RL alone. By not relying on expert actions, we are able to learn from demonstrations with different dynamics, morphologies, and objects.
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication. However, due to the limitation of their on-board power and flight time, it is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT). In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices. Then, a deep reinforcement learning-based technique is conceived for finding the optimal trajectory and throughput in a specific coverage area. After training, the UAV has the ability to autonomously collect all the data from user nodes at a significant total sum-rate improvement while minimising the associated resources used. Numerical results are provided to highlight how our techniques strike a balance between the throughput attained, trajectory, and the time spent. More explicitly, we characterise the attainable performance in terms of the UAV trajectory, the expected reward and the total sum-rate.
Quadrupedal robots are skillful at locomotion tasks while lacking manipulation skills, not to mention dexterous manipulation abilities. Inspired by the animal behavior and the duality between multi-legged locomotion and multi-fingered manipulation, we showcase a circus ball challenge on a quadrupedal robot, ANYmal. We employ a model-free reinforcement learning approach to train a deep policy that enables the robot to balance and manipulate a light-weight ball robustly using its limbs without any contact measurement sensor. The policy is trained in the simulation, in which we randomize many physical properties with additive noise and inject random disturbance force during manipulation, and achieves zero-shot deployment on the real robot without any adjustment. In the hardware experiments, dynamic performance is achieved with a maximum rotation speed of 15 deg/s, and robust recovery is showcased under external poking. To our best knowledge, it is the first work that demonstrates the dexterous dynamic manipulation on a real quadrupedal robot.
We consider the problem of learning preferences over trajectories for mobile manipulators such as personal robots and assembly line robots. The preferences we learn are more intricate than simple geometric constraints on trajectories; they are rather governed by the surrounding context of various objects and human interactions in the environment. We propose a coactive online learning framework for teaching preferences in contextually rich environments. The key novelty of our approach lies in the type of feedback expected from the user: the human user does not need to demonstrate optimal trajectories as training data, but merely needs to iteratively provide trajectories that slightly improve over the trajectory currently proposed by the system. We argue that this coactive preference feedback can be more easily elicited than demonstrations of optimal trajectories. Nevertheless, theoretical regret bounds of our algorithm match the asymptotic rates of optimal trajectory algorithms. We implement our algorithm on two high degree-of-freedom robots, PR2 and Baxter, and present three intuitive mechanisms for providing such incremental feedback. In our experimental evaluation we consider two context rich settings -- household chores and grocery store checkout -- and show that users are able to train the robot with just a few feedbacks (taking only a few minutes).footnote{Parts of this work has been published at NIPS and ISRR conferences~citep{Jain13,Jain13b}. This journal submission presents a consistent full paper, and also includes the proof of regret bounds, more details of the robotic system, and a thorough related work.}

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا