Convergence of eigenstate expectation values with system size


Abstract in English

Understanding the asymptotic behavior of physical quantities in the thermodynamic limit is a fundamental problem in statistical mechanics. In this paper, we study how fast the eigenstate expectation values of a local operator converge to a smooth function of energy density as the system size diverges. In translationally invariant systems in any spatial dimension, we prove that for all but a measure zero set of local operators, the deviations of finite-size eigenstate expectation values from the aforementioned smooth function are lower bounded by $1/O(N)$, where $N$ is the system size. The lower bound holds regardless of the integrability or chaoticity of the model, and is tight in systems satisfying the eigenstate thermalization hypothesis.

Download