Do you want to publish a course? Click here

Impact of high energy beam tunes on the sensitivities to the standard unknowns at DUNE

71   0   0.0 ( 0 )
 Added by Poonam Mehta
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Even though neutrino oscillations have been conclusively established, there are a few unanswered questions pertaining to leptonic Charge Parity violation (CPV), mass hierarchy (MH) and $theta_{23}$ octant degeneracy. Addressing these questions is of paramount importance at the current and future neutrino experiments including the Deep Underground Neutrino Experiment (DUNE) which has a baseline of 1300 km. In the standard mode, DUNE is expected to run with a {textit{low energy}} (LE) tuned beam which peaks around the first oscillation maximum ($2-3$ GeV) (and then sharply falls off as we go to higher energies). However, the wide band nature of the beam available at long baseline neutrino facility (LBNF) allows for the flexibility in utilizing beam tunes that are well-suited at higher energies as well. In this work, we utilize a beam that provides high statistics at higher energies which is referred to as the {textit{medium energy}} (ME) beam. This opens up the possibility of exploring not only the usual oscillation channels but also the $ u_{mu} to u_{tau}$ oscillation channel which was otherwise not accessible. Our goal is to find an optimal combination of beam tune and runtime (with the total runtime held fixed) distributed in neutrino and antineutrino mode that leads to an improvement in the sensitivities of these parameters at DUNE. In our analysis, we incorporate all the three channels ($ u_{mu} to u_{e}, u_{mu} to u_{mu}, u_{mu} to u_{tau}$) and develop an understanding of their relative contributions in sensitivities at the level of $Delta chi^2$. Finally, we obtain the preferred combination of runtime using both the beam tunes as well as neutrino and antineutrino mode that lead to enhanced sensitivity to the current unknowns in neutrino oscillation physics i.e., CPV, MH and $theta_{23}$ octant.

rate research

Read More

The full physics potential of the next-generation Deep Underground Neutrino Experiment (DUNE) is still being explored. In particular, there have been some recent studies on the possibility of improving DUNEs neutrino energy reconstruction. The main motivation is that a better determination of the neutrino energy in an event-by-event basis will translate into an improved measurement of the Dirac $CP$ phase and other neutrino oscillation parameters. To further motivate studies and improvements on the neutrino energy reconstruction, we evaluate the impact of energy resolution at DUNE on an illustrative new physics scenario, viz. non-standard interactions (NSI) of neutrinos with matter. We show that a better energy resolution in comparison to the ones given in the DUNE conceptual and technical design reports may significantly enhance the experimental sensitivity to NSI, particularly when degeneracies are present. While a better reconstruction of the first oscillation peak helps disentangling standard $CP$ effects from those coming from NSIs, we find that the second oscillation peak also plays a nontrivial role in improving DUNEs sensitivity.
Light sterile neutrinos can be probed in a number of ways, including electroweak decays, cosmology and neutrino oscillation experiments. At long-baseline experiments, the neutral-current data is directly sensitive to the presence of light sterile neutrinos: once the active neutrinos have oscillated into a sterile state, a depletion in the neutral-current data sample is expected since they do not interact with the $Z$ boson. This channel offers a direct avenue to probe the mixing between a sterile neutrino and the tau neutrino, which remains largely unconstrained by current data. In this work, we study the potential of the DUNE experiment to constrain the mixing angle which parametrizes this mixing, $theta_{34}$, through the observation of neutral-current events at the far detector. We find that DUNE will be able to improve significantly over current constraints thanks to its large statistics and excellent discrimination between neutral- and charged-current events.
We explore the capabilities of the upcoming Deep Underground Neutrino Experiment (DUNE) to measure $ u_tau$ charged-current interactions and the associated oscillation probability $P( u_mu to u_tau)$ at its far detector, concentrating on how such results can be used to probe neutrino properties and interactions. DUNE has the potential to identify significantly more $ u_tau$ events than all existing experiments and can use this data sample to nontrivially test the three-massive-neutrinos paradigm by providing complementary measurements to those from the $ u_e$ appearance and $ u_mu$ disappearance channels. We further discuss the sensitivity of the $ u_tau$ appearance channel to several hypotheses for the physics that may lurk beyond the three-massive-neutrinos paradigm: a non-unitary lepton mixing matrix, the $3+1$ light neutrinos hypothesis, and the existence of non-standard neutral-current neutrino interactions. Throughout, we also consider the relative benefits of the proposed high-energy tune of the Long-Baseline Neutrino Facility (LBNF) beam-line.
We study the physics reach of the long-baseline oscillation analysis of the DUNE experiment when realistic simulations are used to estimate its neutrino energy reconstruction capabilities. Our studies indicate that significant improvements in energy resolution compared to what is customarily assumed are plausible. This improved energy resolution can increase the sensitivity to leptonic CP violation in two ways. On the one hand, the CP-violating term in the oscillation probability has a characteristic energy dependence that can be better reproduced. On the other hand, the second oscillation maximum, especially sensitive to $delta_{CP}$, is better reconstructed. These effects lead to a significant improvement in the fraction of values of $delta_{CP}$ for which a $5 sigma$ discovery of leptonic CP-violation would be possible. The precision of the $delta_{CP}$ measurement could also be greatly enhanced, with a reduction of the maximum uncertainties from $26^circ$ to $18^circ$ for a 300~MW$cdot$kt$cdot$yr exposure. We therefore believe that this potential gain in physics reach merits further investigations of the detector performance achievable in DUNE.
While the QCD axion is often considered to be necessarily light ($lesssim$ eV), recent work has opened a viable and interesting parameter space for heavy axions, which solve both the Strong CP and the axion Quality Problems. These well-motivated heavy axions, as well as the generic axion-like-particles, call for explorations in the GeV mass realm at collider and beam dump environments. The primary upcoming neutrino experiment, Deep Underground Neutrino Experiment (DUNE), is simultaneously also a powerful beam dump experiment, enabled by its multipurpose Near Detector (ND) complex. In this study, we show with detailed analyses that the DUNE ND has a unique sensitivity to heavy axions for masses between $20$ MeV and $2$ GeV, complementary to other future experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا