Near-linear Size Hypergraph Cut Sparsifiers


Abstract in English

Cuts in graphs are a fundamental object of study, and play a central role in the study of graph algorithms. The problem of sparsifying a graph while approximately preserving its cut structure has been extensively studied and has many applications. In a seminal work, Benczur and Karger (1996) showed that given any $n$-vertex undirected weighted graph $G$ and a parameter $varepsilon in (0,1)$, there is a near-linear time algorithm that outputs a weighted subgraph $G$ of $G$ of size $tilde{O}(n/varepsilon^2)$ such that the weight of every cut in $G$ is preserved to within a $(1 pm varepsilon)$-factor in $G$. The graph $G$ is referred to as a {em $(1 pm varepsilon)$-approximate cut sparsifier} of $G$. A natural question is if such cut-preserving sparsifiers also exist for hypergraphs. Kogan and Krauthgamer (2015) initiated a study of this question and showed that given any weighted hypergraph $H$ where the cardinality of each hyperedge is bounded by $r$, there is a polynomial-time algorithm to find a $(1 pm varepsilon)$-approximate cut sparsifier of $H$ of size $tilde{O}(frac{nr}{varepsilon^2})$. Since $r$ can be as large as $n$, in general, this gives a hypergraph cut sparsifier of size $tilde{O}(n^2/varepsilon^2)$, which is a factor $n$ larger than the Benczur-Karger bound for graphs. It has been an open question whether or not Benczur-Karger bound is achievable on hypergraphs. In this work, we resolve this question in the affirmative by giving a new polynomial-time algorithm for creating hypergraph sparsifiers of size $tilde{O}(n/varepsilon^2)$.

Download