No Arabic abstract
Attosecond science is well developed for atoms and promising results have been obtained for molecules and solids. Here, we review the first steps in developing attosecond time-resolved measurements in liquids. These advances provide access to time-domain studies of electronic dynamics in the natural environment of chemical reactions and biological processes. We concentrate on two techniques that are representative of the two main branches of attosecond science: pump-probe measurements using attosecond pulses and high-harmonic spectroscopy (HHS). In the first part, we discuss attosecond photoelectron spectroscopy with cylindrical microjets and its application to measure time delays between liquid and gaseous water. We present the experimental techniques, the new data-analysis methods and the experimental results. We describe in detail the conceptual and theoretical framework required to fully describe attosecond chronoscopy in liquids at a quantum-mechanical level. This includes photoionization delays, scattering delays, as well as a coherent description of electron transport and (laser-assisted) photoemission and scattering. As a consequence, we show that attosecond chronoscopy of liquids is, in general, sensitive to both types of delays, as well as the electron mean-free paths. Through detailed modeling, involving state-of-the-art quantum scattering and Monte-Carlo trajectory methods, we show that the photoionization delays dominate in attosecond chronoscopy of liquid water at photon energies of 20-30 eV. This conclusion is supported by a near-quantitative agreement between experiment and theory. In the second part, we introduce HHS of liquids based on flat microjets. These results represent the first observation of high-harmonic generation (HHG) in liquids extending well beyond the visible into the extreme-ultraviolet regime.
Glasses are solid materials whose constituent atoms are arranged in a disordered manner. The transition from a liquid to a glass remains one of the most poorly understood phenomena in condensed matter physics, and still no fully microscopic theory exists that can describe the dynamics of supercooled liquids in a quantitative manner over all relevant time scales. Here we present such a theoretical framework that yields near-quantitative accuracy for the time-dependent correlation functions of a supercooled system over a broad density range. Our approach requires only simple static structural information as input and is based entirely based on first principles. Owing to this first-principles nature, the framework offers a unique platform to study the relation between structure and dynamics in glass-forming matter, and paves the way towards a systematically correctable and ultimately fully quantitative theory of microscopic glassy dynamics.
We study the transient dynamics that arise during the formation of an atom laser beam in a tight waveguide. During the time evolution the density profile develops a series of wiggles which are related to the diffraction in time phenomenon. The apodization of matter waves, which relies on the use of smooth aperture functions, allows to suppress such oscillations in a time interval, after which there is a revival of the diffraction in time. The revival time scale is directly related to the inverse of the harmonic trap frequency for the atom reservoir.
Multi-electron dynamics in atoms and molecules very often occur on sub- to few-femtosecond timescales. The available intensities of extreme-ultraviolet (XUV) attosecond pulses have previously only allowed the time-resolved investigation of two-photon, two-electron interactions. Here we demonstrate attosecond control over double and triple ionization of argon atoms involving the absorption of up to five XUV photons. In an XUV-pump XUV-probe measurement using a pair of attosecond pulse trains (APTs), the Ar$^{2+}$ ion yield exhibits a weak delay dependence, showing that its generation predominantly results from the sequential emission of two electrons by photoabsorption from the two APTs. In contrast, the Ar$^{3+}$ ion yield exhibits strong modulations as a function of the delay, which is a clear signature of the simultaneous absorption of at least two XUV photons. The experimental results are well reproduced by numerical calculations that provide detailed insights into the ionization dynamics. Our results open up new opportunities for the investigation and control of multi-electron dynamics and complex electron correlation mechanisms on extremely short timescales.
We observe coherent spin oscillations in an antiferromagnetic spin-1 Bose-Einstein condensate of sodium. The variation of the spin oscillations with magnetic field shows a clear signature of nonlinearity, in agreement with theory, which also predicts anharmonic oscillations near a critical magnetic field. Measurements of the magnetic phase diagram agree with predictions made in the approximation of a single spatial mode. The oscillation period yields the best measurement to date of the sodium spin-dependent interaction coefficient, determining that the difference between the sodium spin-dependent s-wave scattering lengths $a_{f=2}-a_{f=0}$ is $2.47pm0.27$ Bohr radii.
We provide a scheme for the generation of controlled entangled number states of Bose-Einstein condensates in multiple wells, and also provide a novel method for the creation of squeezed states without severe adiabatic constraints on barrier heights. The condensate in a multiple well trap can be evolved, starting with a specific initial phase difference between the neighboring wells, to a tunable entangled state or a squeezed state. We propose a general formula for the initial phase difference between the neighboring wells that is valid for any number of wells, even and odd.