No Arabic abstract
The security of real-world quantum key distribution (QKD) critically depends on the number of data points the system can collect in a fixed time interval. To date, state-of-the-art finite-key security analyses require block lengths in the order of 1E4 bits to obtain positive secret keys. This requirement, however, can be very difficult to achieve in practice, especially in the case of entanglement-based satellite QKD systems, where the overall channel loss can go up to 70 dB or more. Here, we provide an improved finite-key security analysis which can reduce the block length requirement by 14% to 17% for standard channel and protocol settings. In practical terms, this reduction could save entanglement-based satellite QKD weeks of measurement time and resources, thereby bringing space-based QKD technology closer to reality. As an application, we use the improved analysis to show that the recently reported Micius QKD satellite is capable of generating positive secret keys with a $1E-5$ security level.
We report the security analysis of time-coding quantum key distribution protocols. The protocols make use of coherent single-photon pulses. The key is encoded in the photon time-detection. The use of coherent superposition of states allows to detect eavesdropping of the key. We give a mathematical model of a first protocol from which we derive a second, simpler, protocol. We derive the security analysis of both protocols and find that the secure rates can be similar to those obtained with the BB84 protocol. We then calculate the secure distance for those protocols over standard fibre links. When using low-noise superconducting single photon detectors, secure distances over 200 km can be foreseen. Finally, we analyse the consequences of photon-number splitting attacks when faint pulses are used instead of single photon pulses. A decoy states technique can be used to prevent such attacks.
The study of free-space quantum communications requires tools from quantum information theory, optics and turbulence theory. Here we combine these tools to bound the ultimate rates for key and entanglement distribution through a free-space link, where the propagation of quantum systems is generally affected by diffraction, atmospheric extinction, turbulence, pointing errors, and background noise. Besides establishing ultimate limits, we also show that the composable secret-key rate achievable by a suitable (pilot-guided and post-selected) coherent-state protocol is sufficiently close to these limits, therefore showing the suitability of free-space channels for high-rate quantum key distribution. Our work provides analytical tools for assessing the composable finite-size security of coherent-state protocols in general conditions, from the standard assumption of a stable communication channel (as is typical in fiber-based connections) to the more challenging scenario of a fading channel (as is typical in free-space links).
Quantum key distribution (QKD) is the first quantum information task to reach the level of mature technology, already fit for commercialization. It aims at the creation of a secret key between authorized partners connected by a quantum channel and a classical authenticated channel. The security of the key can in principle be guaranteed without putting any restriction on the eavesdroppers power. The first two sections provide a concise up-to-date review of QKD, biased toward the practical side. The rest of the paper presents the essential theoretical tools that have been developed to assess the security of the main experimental platforms (discrete variables, continuous variables and distributed-phase-reference protocols).
Quantum key distribution (QKD) gradually has become a crucial element of practical secure communication. In different scenarios, the security analysis of genuine QKD systems is complicated. A universal secret key rate calculation method, used for realistic factors such as multiple degrees of freedom encoding, asymmetric protocol structures, equipment flaws, environmental noise, and so on, is still lacking. Based on the correlations of statistical data, we propose a security analysis method without restriction on encoding schemes. This method makes a trade-off between applicability and accuracy, which can effectively analyze various existing QKD systems. We illustrate its ability by analyzing source flaws and a high-dimensional asymmetric protocol. Results imply that our method can give tighter bounds than the Gottesman-Lo-Lutkenhaus-Preskill (GLLP) analysis and is beneficial to analyze protocols with complex encoding structures. Our work has the potential to become a reference standard for the security analysis of practical QKD.
We analyse the finite-size security of the efficient Bennett-Brassard 1984 protocol implemented with decoy states and apply the results to a gigahertz-clocked quantum key distribution system. Despite the enhanced security level, the obtained secure key rates are the highest reported so far at all fibre distances.