Do you want to publish a course? Click here

Precise Values of Running Quark and Lepton Masses in the Standard Model

191   0   0.0 ( 0 )
 Added by Guo-Yuan Huang
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The precise values of the running quark and lepton masses $m^{}_f(mu)$, which are defined in the modified minimal subtraction scheme ($overline{rm MS}$) with $mu$ being the renormalization scale and the subscript $f$ referring to all the charged fermions in the Standard Model (SM), are very useful for the model building of fermion masses and flavor mixing and for the precision calculations in the SM or its new-physics extensions. In this paper, we calculate the running fermion masses by taking account of the up-to-date experimental results collected by Particle Data Group and the latest theoretical higher-order calculations of relevant renormalization-group equations and matching conditions in the literature. The emphasis is placed on the quantitative estimation of current uncertainties on the running fermion masses, and the linear error propagation method is adopted to quantify the uncertainties, which has been justified by the Monte-Carlo simulations. We identify two main sources of uncertainties, i.e., one from the experimental inputs and the other from the truncations at finite-order loops. The correlations among the uncertainties of running parameters can be remarkable in some cases. The final results of running fermion masses at several representative energy scales are tabulated for further applications.



rate research

Read More

Reliable values of quark and lepton masses are important for model building at a fundamental energy scale, such as the Fermi scale M_Z approx 91.2 GeV and the would-be GUT scale Lambda_GUT sim 2 times 10^16 GeV. Using the latest data given by the Particle Data Group, we update the running quark and charged-lepton masses at a number of interesting energy scales below and above M_Z. In particular, we take into account the possible new physics scale (mu sim 1 TeV) to be explored by the LHC and the typical seesaw scales (mu sim 10^9 GeV and mu sim 10^12 GeV) which might be relevant to the generation of neutrino masses. For illustration, the running masses of three light Majorana neutrinos are also calculated. Our up-to-date table of running fermion masses are expected to be very useful for the study of flavor dynamics at various energy scales.
265 - M.D. Scadron , R. Delbourgo , 2006
Constituent quark masses can be determined quite well from experimental data in several ways and one can obtain fairly accurate values for all six $m_q$. The strong quark-meson coupling $g=2pi /sqrt{3}$ arises from the quark-level linear $sigma$ model, whereas $e$ and $sintheta_w$ arise from weak interactions when the heavy $M_W$ and $M_Z$ are regarded as resonances in analogy with the strong KSFR relation. The Higgs boson mass, tied to null expectation value of charged Higgs components, is found to be around 317 GeV. Finally, the experimental CPV phase angle $delta$ and the three CKM angles $Theta_c, Theta_2, Theta_3$ are successfully deduced from the 6 constituent quark masses following Fritzschs approach.
We explore a simple parameterization of new physics that results in an ultraviolet complete gauge-quark sector of the Standard Model. Specifically, we add an antiscreening contribution to the beta functions of the gauge couplings and a flavor-independent, antiscreening contribution to the beta functions of the Yukawa couplings. These two free parameters give rise to an intricate web of Renormalization Group fixed points. Their predictive power extends to the flavor structure and mixing patterns, which we investigate to demonstrate that some of the free parameters of the Standard Model could be determined by the Renormalization Group flow.
Assuming that the leptons and quarks other than top are massless at tree level, we show that their masses may be induced by loops involving the top quark. As a result, the generic features of the fermion mass spectrum arise from combinations of loop factors. Explicitly, we construct a renormalizable model involving a few new particles, which leads to 1-loop bottom and tau masses, a 2-loop charm mass, 3-loop muon and strange masses, and 4-loop masses for first generation fermions. This realistic pattern of masses does not require any symmetry to differentiate the three generations of fermions. The new particles may produce observable effects in future experiments searching for mu to e conversion in nuclei, rare meson decays, and other processes.
We consider an extension of the standard model with three Higgs doublet model and $S_3times mathbb{Z}_2$ discrete symmetries. Two of the scalar doublets are inert due to the $mathbb{Z}_2$ symmetry. We have calculated all the mass spectra in the scalar and lepton sectors and accommodated the leptonic mixing matrix as well. We also show that the model has scalar and pseudoscalar candidates to dark matter. Constraints on the parameters of the model coming from the decay $muto egamma$ were considered and we found signals between the current and the upcoming experimental limits, and from that decay we can predict the one-loop $muto eebar{e}$ channel.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا