Recent years have seen tremendous growth in the amount of verified software. Proofs for complex properties can now be achieved using higher-order theories and calculi. Complex properties lead to an ever-growing number of definitions and associated lemmas, which constitute an integral part of proof construction. Following this -- whether automatic or semi-automatic -- methods for computer-aided lemma discovery have emerged. In this work, we introduce a new symbolic technique for bottom-up lemma discovery, that is, the generation of a library of lemmas from a base set of inductive data types and recursive definitions. This is known as the theory exploration problem, and so far, solutions have been proposed based either on counter-example generation or the more prevalent random testing combined with first-order solvers. Our new approach, being purely deductive, eliminates the need for random testing as a filtering phase and for SMT solvers. Therefore it is amenable compositional reasoning and for the treatment of user-defined higher-order functions. Our implementation has shown to find more lemmas than prior art, while avoiding redundancy.