Do you want to publish a course? Click here

Effects of transient non-thermal particles on the big bang nucleosynthesis

68   0   0.0 ( 0 )
 Added by Tae-Sun Park
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The effects of introducing a small amount of non-thermal distribution (NTD) of elements in big bang nucleosynthesis (BBN) are studied by allowing a fraction of the NTD to be time-dependent so that it contributes only during a certain period of the BBN evolution. The fraction is modeled as a Gaussian-shaped function of $log(T)$, where $T$ is the temperature of the cosmos, and thus the function is specified by three parameters; the central temporal position, the width and the magnitude. The change in the average nuclear reaction rates due to the presence of the NTD is assumed to be proportional to the Maxwellian reaction rates but with temperature $T_{rm NTD} equiv zeta T$, $zeta$ being another parameter of our model. By scanning a wide four-dimensional parametric space at about half a million points, we have found about 130 points with $chi^2< 1$, at which the predicted primordial abundances of light elements are consistent with the observations. The magnitude parameter $varepsilon_0$ of these points turns out to be scattered over a very wide range from $varepsilon_0 sim 10^{-19}$ to $sim 10^{-1}$, and the $zeta$-parameter is found to be strongly correlated with the magnitude parameter $varepsilon_0$. The temperature region with $0.3times 10^9 mbox{K} lesssim T lesssim 0.4times 10^9 mbox{K}$ or the temporal region $tsimeq 10^3$ s seems to play a central role in lowering $chi^2$.



rate research

Read More

We review important reactions in the big bang nucleosynthesis (BBN) model involving a long-lived negatively charged massive particle, $X^-$, which is much heavier than nucleons. This model can explain the observed $^7$Li abundances of metal-poor stars, and predicts a primordial $^9$Be abundance that is larger than the standard BBN prediction. In the BBN epoch, nuclei recombine with the $X^-$ particle. Because of the heavy $X^-$ mass, the atomic size of bound states $A_X$ is as small as the nuclear size. The nonresonant recombination rates are then dominated by the $d$-wave $rightarrow$ 2P transition for $^7$Li and $^{7,9}$Be. The $^7$Be destruction occurs via a recombination with the $X^-$ followed by a proton capture, and the primordial $^7$Li abundance is reduced. Also, the $^9$Be production occurs via the recombination of $^7$Li and $X^-$ followed by deuteron capture. The initial abundance and the lifetime of the $X^-$ particles are constrained from a BBN reaction network calculation. We estimate that the derived parameter region for the $^7$Li reduction is allowed in supersymmetric or Kaluza-Klein (KK) models. We find that either the selectron, smuon, KK electron or KK muon could be candidates for the $X^-$ with $m_Xsim {mathcal O}(1)$ TeV, while the stau and KK tau cannot.
Big bang nucleosynthesis (BBN) is affected by the energy density of a primordial magnetic field (PMF). For an easy derivation of constraints on models for PMF generations, we assume a PMF with a power law (PL) distribution in wave number defined with a field strength, a PL index, and maximum and minimum scales at a generation epoch. We then show a relation between PL-PMF parameters and the scale invariant (SI) strength of PMF for the first time. We perform a BBN calculation including PMF effects, and show abundances as a function of baryon to photon ratio $eta$. The SI strength of the PMF is constrained from observational constraints on abundances of $^4$He and D. The minimum abundance of $^7$Li/H as a function of $eta$ slightly moves to a higher $^7$Li/H value at a larger $eta$ value when a PMF exists during BBN. We then discuss degeneracies between the PL-PMF parameters in the PMF effect. In addition, we assume a general case in which both the existence and the dissipation of PMF are possible. It is then found that an upper limit on the SI strength of the PMF can be derived from a constraint on $^4$He abundance, and that a lower limit on the allowed $^7$Li abundance is significantly higher than those observed in metal-poor stars.
We study dynamical screening effects of nuclear charge on big bang nucleosynthesis (BBN). A moving ion in plasma creates a distorted electric potential leading to a screening effect which is different from the standard static Salpeter formula. We consider the electric potential for a moving test charge, taking into account dielectric permittivity in the unmagnetized Maxwellian plasma during the BBN epoch. Based on the permittivity in a BBN plasma condition, we present the Coulomb potential for a moving nucleus, and show that enhancement factor for the screening of the potential increases the thermonuclear reaction rates by a factor order of 10^(-7). In the Gamow energy region for nuclear collisions, we find that the contribution of the dynamical screening is less than that of the static screening case, consequently which primordial abundances hardly change. Based on the effects of dynamical screening under various possible astrophysical conditions, we discuss related plasma properties required for possible changes of the thermal nuclear reactions.
We propose a correction of the standard Big Bang nucleosynthesis (BBN) scenario to resolve the primordial lithium problem by considering a possibility that the primordial plasma can deviate from the ideal state. In the standard BBN, the primordial plasma is assumed to be ideal, with particles and photons satisfying the Maxwell-Boltzmann and Planck distribution, respectively. We suggest that this assumption of the primordial plasma being ideal might oversimplify the early Universe and cause the lithium problem. We find that deviation of photon distribution from the Planck distribution, which is parameterised with the help of Tsallis statistics, can resolve the primordial lithium problem when the particle distributions of the primordial plasma still follow the MaxwellBoltzmann distribution. We discuss how the primordial plasma can be weakly non-ideal in this specific fashion and its effects on the cosmic evolution.
In the primordial Universe, neutrino decoupling occurs only slightly before electron-positron annihilations, leading to an increased neutrino energy density with order $10^{-2}$ spectral distortions compared to the standard instantaneous decoupling approximation. However, there are discrepancies in the literature on the impact it has on the subsequent primordial nucleosynthesis, in terms of both the magnitude of the abundance modifications and their sign. We review how neutrino decoupling indirectly affects the various stages of nucleosynthesis, namely, the freezing out of neutron abundance, the duration of neutron beta decay, and nucleosynthesis itself. This allows to predict the sign of the abundance variations that are expected when the physics of neutrino decoupling is taken into account. For simplicity, we ignore neutrino oscillations, but we conjecture from the detailed interplay of neutrino temperature shifts and distortions that their effect on final light element abundances should be subdominant.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا