Do you want to publish a course? Click here

Empirical test for relativistic kinetic theories based on the Sunyaev-Zeldovich effect

111   0   0.0 ( 0 )
 Added by Sandor M. Molnar
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a new method to determine the electron velocity (EV) distribution function in the intracluster gas (ICG) in clusters of galaxies based on the frequency dependence of the Sunyaev-Zeldovich (SZ) effect. It is generally accepted that the relativistic equilibrium EV distribution is the one suggested by Juttner. However, there is an ongoing debate on the foundation of relativistic kinetic theory, and other distributions have also been proposed. The mildly relativistic intracluster gas (ICG) provides a unique laboratory to test relativistic kinetic theories. We carried out Monte Carlo simulations to generate SZ signal from a single-temperature gas assuming the Juttner EV distribution assuming a few per cent errors. We fitted SZ models based on non-relativistic Maxwellian, and its two relativistic generalizations, the Juttner and modified Juttner distributions. We found that a 1% error in the SZ signal is sufficient to distinguish between these distributions with high significance based on their different best-fit temperatures. However, in any LOS in a cluster, the ICG contains a range of temperatures. Using our N-body/hydrodynamical simulation of a merging galaxy cluster and assuming a 1% error in the SZ measurements in a LOS through a bow shock, we find that it is possible to distinguish between Juttner and modified Juttner distributions with high significance. Our results suggest that deriving ICG temperatures from fitting to SZ data assuming different EV distribution functions and comparing them to the temperature in the same cluster obtained using other observations would enable us to distinguish between the different distributions.11 pages, 8 figures, and 1 table, accepted for publication in the Astrophysical Journal



rate research

Read More

We propose a novel technique to separate the late-time, post-reionization component of the kinetic Sunyaev-Zeldovich (kSZ) effect from the contribution to it from a (poorly understood and probably patchy) reionization history. The kSZ effect is one of the most promising probe of the {em missing baryons} in the Universe. We study the possibility of reconstructing it in three dimensions (3D), using future spectroscopic surveys such as the Euclid survey. By reconstructing a 3D template from galaxy density and peculiar velocity fields from spectroscopic surveys we cross-correlate the estimator against CMB maps. The resulting cross-correlation can help us to map out the kSZ contribution to CMB in 3D as a function of redshift thereby extending previous results which use tomographic reconstruction. This allows the separation of the late time effect from the contribution owing to reionization. By construction, it avoids contamination from foregrounds, primary CMB, tSZ effect as well as from star forming galaxies. Due to a high number density of galaxies the signal-to-noise (S/N) for such cross-correlational studies are higher, compared to the studies involving CMB power spectrum analysis. Using a spherical Bessel-Fourier (sFB) transform we introduce a pair of 3D power-spectra: ${cal C}^{parallel}_ell(k)$ and ${cal C}^{perp}_ell(k)$ that can be used for this purpose. We find that in a future spectroscopic survey with near all-sky coverage and a survey depth of $zapprox 1$, reconstruction of ${cal C}^{perp}_ell(k)$ can be achieved in a few radial wave bands $kapprox(0.01-0.5 h^{-1}rm Mpc)$ with a S/N of upto ${cal O}(10)$ for angular harmonics in the range $ell=(200-2000)$ (abrdiged).
We explore the potential of the kinetic Sunyaev-Zeldovich (kSZ) effect as the cornerstone of a future observational probe for halo spin bias, the secondary dependence of halo clustering on halo spin at fixed halo mass. Using the IllustrisTNG magneto-hydrodynamical cosmological simulation, we measure both the kSZ and the thermal SZ (tSZ) effects produced by the baryonic content of more than 50,000 haloes within the halo mass range $11 < log_{10} ({rm M_{vir}}/ h^{-1} {rm M_{odot}}) lesssim 14.5$. First, we confirm that the magnitude of both effects depends strongly on the total gas and virial mass of the haloes, and that the integrated kSZ signal displays a significant correlation with the angular momentum of the intra-halo gas, particularly for massive haloes. Second, we show that both the integrated kSZ signal and the ratio of the integrated kSZ and tSZ signals trace total halo spin, even though significant scatter exists. Finally, we demonstrate that, in the absence of observational and instrumental uncertainties, these SZ-related statistics can be used to recover most of the underlying IllustrisTNG halo spin bias signal. Our analysis represents the first attempt to develop a future observational probe for halo spin bias, bringing forward alternative routes for measuring the secondary bias effects.
We report the direct detection of the kinetic Sunyaev-Zeldovich (kSZ) effect in galaxy clusters with a 3.5 sigma significance level. The measurement was performed by stacking the Planck map at 217 GHz at the positions of galaxy clusters from the Wen-Han-Liu (WHL) catalog. To avoid the cancelation of positive and negative kSZ signals, we used the large-scale distribution of the Sloan Digital Sky Survey (SDSS) galaxies to estimate the peculiar velocities of the galaxy clusters along the line of sight and incorporated the sign in the velocity-weighted stacking of the kSZ signals. Using this technique, we were able to measure the kSZ signal around galaxy clusters beyond 3R500. Assuming a standard beta-model, we also found that the gas fraction within R500 is fgas,500 = 0.12 +- 0.04 for the clusters with the mass of M500 ~ 1e14 Msun/h. We compared this result to predictions from the Magneticum cosmological hydrodynamic simulations as well as other kSZ and X-ray measurements, most of which show a lower gas fraction than the universal baryon fraction for the same mass of clusters. Our value is statistically consistent with results from the measurements and simulations and also with the universal value within our measurement uncertainty.
We estimate the amount of the {it missing baryons} detected by the Planck measurements of the cosmic microwave background in the direction of Central Galaxies (CGs) identified in the Sloan galaxy survey. The peculiar motion of the gas inside and around the CGs unveils values of the Thomson optical depth $tau_{rm T}$ in the range $0.2$--$2times 10^{-4}$, indicating that the regions probed around CGs contain roughly half of the total amount of baryons in the Universe at the epoch where the CGs are found. If baryons follow dark matter, the measured $tau_{rm T}$s are compatible with the detection all the baryons existing inside and around the CGs.
Clusters of galaxies provide valuable information on the evolution of the Universe and large scale structures. Recent cluster observations via the thermal Sunyaev-Zeldovich (tSZ) effect have proven to be a powerful tool to detect and study them. In this context, high resolution tSZ observations (~ tens of arcsec) are of particular interest to probe intermediate and high redshift clusters. Observations of the tSZ effect will be carried out with the millimeter dual-band NIKA2 camera, based on Kinetic Inductance Detectors (KIDs) to be installed at the IRAM 30-meter telescope in 2015. To demonstrate the potential of such an instrument, we present tSZ observations with the NIKA camera prototype, consisting of two arrays of 132 and 224 detectors that observe at 140 and 240 GHz with a 18.5 and 12.5 arcsec angular resolution, respectively. The cluster RX J1347.5-1145 was observed simultaneously at 140 and 240 GHz. We used a spectral decorrelation technique to remove the atmospheric noise and obtain a map of the cluster at 140 GHz. The efficiency of this procedure has been characterized through realistic simulations of the observations. The observed 140 GHz map presents a decrement at the cluster position consistent with the tSZ nature of the signal. We used this map to study the pressure distribution of the cluster by fitting a gNFW model to the data. Subtracting this model from the map, we confirm that RX J1347.5-1145 is an ongoing merger, which confirms and complements previous tSZ and X-ray observations. For the first time, we demonstrate the tSZ capability of KID based instruments. The NIKA2 camera with ~ 5000 detectors and a 6.5 arcmin field of view will be well-suited for in-depth studies of the intra cluster medium in intermediate to high redshifts, which enables the characterization of recently detected clusters by the Planck satellite.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا