No Arabic abstract
Image restoration has seen great progress in the last years thanks to the advances in deep neural networks. Most of these existing techniques are trained using full supervision with suitable image pairs to tackle a specific degradation. However, in a blind setting with unknown degradations this is not possible and a good prior remains crucial. Recently, neural network based approaches have been proposed to model such priors by leveraging either denoising autoencoders or the implicit regularization captured by the neural network structure itself. In contrast to this, we propose using normalizing flows to model the distribution of the target content and to use this as a prior in a maximum a posteriori (MAP) formulation. By expressing the MAP optimization process in the latent space through the learned bijective mapping, we are able to obtain solutions through gradient descent. To the best of our knowledge, this is the first work that explores normalizing flows as prior in image enhancement problems. Furthermore, we present experimental results for a number of different degradations on data sets varying in complexity and show competitive results when comparing with the deep image prior approach.
Image denoising is the process of removing noise from noisy images, which is an image domain transferring task, i.e., from a single or several noise level domains to a photo-realistic domain. In this paper, we propose an effective image denoising method by learning two image priors from the perspective of domain alignment. We tackle the domain alignment on two levels. 1) the feature-level prior is to learn domain-invariant features for corrupted images with different level noise; 2) the pixel-level prior is used to push the denoised images to the natural image manifold. The two image priors are based on $mathcal{H}$-divergence theory and implemented by learning classifiers in adversarial training manners. We evaluate our approach on multiple datasets. The results demonstrate the effectiveness of our approach for robust image denoising on both synthetic and real-world noisy images. Furthermore, we show that the feature-level prior is capable of alleviating the discrepancy between different level noise. It can be used to improve the blind denoising performance in terms of distortion measures (PSNR and SSIM), while pixel-level prior can effectively improve the perceptual quality to ensure the realistic outputs, which is further validated by subjective evaluation.
The accuracy of medical imaging-based diagnostics is directly impacted by the quality of the collected images. A passive approach to improve image quality is one that lags behind improvements in imaging hardware, awaiting better sensor technology of acquisition devices. An alternative, active strategy is to utilize prior knowledge of the imaging system to directly post-process and improve the acquired images. Traditionally, priors about the image properties are taken into account to restrict the solution space. However, few techniques exploit the prior about the noise properties. In this paper, we propose a neural network-based model for disentangling the signal and noise components of an input noisy image, without the need for any ground truth training data. We design a unified loss function that encodes priors about signal as well as noise estimate in the form of regularization terms. Specifically, by using total variation and piecewise constancy priors along with noise whiteness priors such as auto-correlation and stationary losses, our network learns to decouple an input noisy image into the underlying signal and noise components. We compare our proposed method to Noise2Noise and Noise2Self, as well as non-local mean and BM3D, on three public confocal laser endomicroscopy datasets. Experimental results demonstrate the superiority of our network compared to state-of-the-art in terms of PSNR and SSIM.
Deep neural networks (DNNs) have achieved significant success in image restoration tasks by directly learning a powerful non-linear mapping from corrupted images to their latent clean ones. However, there still exist two major limitations for these deep learning (DL)-based methods. Firstly, the noises contained in real corrupted images are very complex, usually neglected and largely under-estimated in most current methods. Secondly, existing DL methods are mostly trained on one pre-assumed degradation process for all of the training image pairs, such as the widely used bicubic downsampling assumption in the image super-resolution task, inevitably leading to poor generalization performance when the true degradation does not match with such assumed one. To address these issues, we propose a unified generative model for the image restoration, which elaborately configures the degradation process from the latent clean image to the observed corrupted one. Specifically, different from most of current methods, the pixel-wisely non-i.i.d. Gaussian distribution, being with more flexibility, is adopted in our method to fit the complex real noises. Furthermore, the method is built on the general image degradation process, making it capable of adapting diverse degradations under one single model. Besides, we design a variational inference algorithm to learn all parameters involved in the proposed model with explicit form of objective loss. Specifically, beyond traditional variational methodology, two DNNs are employed to parameterize the posteriori distributions, one to infer the distribution of the latent clean image, and another to infer the distribution of the image noise. Extensive experiments demonstrate the superiority of the proposed method on three classical image restoration tasks, including image denoising, image super-resolution and JPEG image deblocking.
Microscopy is a powerful visualization tool in biology, enabling the study of cells, tissues, and the fundamental biological processes; yet, the observed images typically suffer from blur and background noise. In this work, we propose a unifying framework of algorithms for Gaussian image deblurring and denoising. These algorithms are based on deep learning techniques for the design of learnable regularizers integrated into the Wiener-Kolmogorov filter. Our extensive experimentation line showcases that the proposed approach achieves a superior quality of image reconstruction and surpasses the solutions that rely either on deep learning or on optimization schemes alone. Augmented with the variance stabilizing transformation, the proposed reconstruction pipeline can also be successfully applied to the problem of Poisson image deblurring, surpassing the state-of-the-art methods. Moreover, several variants of the proposed framework demonstrate competitive performance at low computational complexity, which is of high importance for real-time imaging applications.
Image restoration is a long-standing low-level vision problem that aims to restore high-quality images from low-quality images (e.g., downscaled, noisy and compressed images). While state-of-the-art image restoration methods are based on convolutional neural networks, few attempts have been made with Transformers which show impressive performance on high-level vision tasks. In this paper, we propose a strong baseline model SwinIR for image restoration based on the Swin Transformer. SwinIR consists of three parts: shallow feature extraction, deep feature extraction and high-quality image reconstruction. In particular, the deep feature extraction module is composed of several residual Swin Transformer blocks (RSTB), each of which has several Swin Transformer layers together with a residual connection. We conduct experiments on three representative tasks: image super-resolution (including classical, lightweight and real-world image super-resolution), image denoising (including grayscale and color image denoising) and JPEG compression artifact reduction. Experimental results demonstrate that SwinIR outperforms state-of-the-art methods on different tasks by $textbf{up to 0.14$sim$0.45dB}$, while the total number of parameters can be reduced by $textbf{up to 67%}$.