Do you want to publish a course? Click here

Anharmonicity in Raman-active phonon modes in atomically thin MoS$_2$

331   0   0.0 ( 0 )
 Added by Aveek Bid
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Phonon-phonon anharmonic effects have a strong influence on the phonon spectrum; most prominent manifestation of these effects are the softening (shift in frequency) and broadening (change in FWHM) of the phonon modes at finite temperature. Using Raman spectroscopy, we studied the temperature dependence of the FWHM and Raman shift of $mathrm{E_{2g}^1}$ and $mathrm{A_{1g}}$ modes for single-layer and natural bilayer MoS$_2$ over a broad range of temperatures ($8 < $T$ < 300$ K). Both the Raman shift and FWHM of these modes show linear temperature dependence for $T>100$ K, whereas they become independent of temperature for $T<100$ K. Using first-principles calculations, we show that three-phonon anharmonic effects intrinsic to the material can account for the observed temperature-dependence of the line-width of both the modes. It also plays an important role in determining the temperature-dependence of the frequency of the Raman modes. The observed evolution of the line-width of the A$_{1g}$ mode suggests that electron-phonon processes are additionally involved. From the analysis of the temperature-dependent Raman spectra of MoS$_2$ on two different substrates -- SiO$_2$ and hexagonal boron nitride, we disentangle the contributions of external stress and internal impurities to these phonon-related processes. We find that the renormalization of the phonon mode frequencies on different substrates is governed by strain and intrinsic doping. Our work establishes the role of intrinsic phonon anharmonic effects in deciding the Raman shift in MoS$_2$ irrespective of substrate and layer number.



rate research

Read More

Atomically thin MoS$_{2}$ crystals have been recognized as a quasi-2D semiconductor with remarkable physics properties. This letter reports our Raman scattering measurements on multilayer and monolayer MoS$_{2}$, especially in the low-frequency range ($<$50 cm$^{-1}$). We find two low-frequency Raman modes with contrasting thickness dependence. With increasing the number of MoS$_{2}$ layers, one shows a significant increase in frequency while the other decreases following a 1/N (N denotes layer-number) trend. With the aid of first-principle calculations we assign the former as the shear mode $E_{2g}^{2}$ and the latter as the compression vibrational mode. The opposite evolution of the two modes with thickness demonstrates novel vibrational modes in atomically thin crystal as well as a new and more precise way to characterize thickness of atomically thin MoS$_{2}$ films. In addition, we observe a broad feature around 38 cm$^{-1}$ (~5 meV) which is visible only under near-resonance excitation and pinned at the fixed energy independent of thickness. We interpret the feature as an electronic Raman scattering associated with the spin-orbit coupling induced splitting in conduction band at K points in their Brillouin zone.
119 - J. Hu , X. Liu , C.L. Yue 2015
The extraordinary properties of two dimensional (2D) materials, such as the extremely high carrier mobility in graphene and the large direct band gaps in transition metal dichalcogenides MX2 (M = Mo or W, X = S, Se) monolayers, highlight the crucial role quantum confinement can have in producing a wide spectrum of technologically important electronic properties. Currently one of the highest priorities in the field is to search for new 2D crystalline systems with structural and electronic properties that can be exploited for device development. In this letter, we report on the unusual quantum transport properties of the 2D ternary transition metal chalcogenide - Nb3SiTe6. We show that the micaceous nature of Nb3SiTe6 allows it to be thinned down to one-unit-cell thick 2D crystals using microexfoliation technique. When the thickness of Nb3SiTe6 crystal is reduced below a few unit-cells thickness, we observed an unexpected, enhanced weak-antilocalization signature in magnetotransport. This finding provides solid evidence for the long-predicted suppression of electron-phonon interaction caused by the crossover of phonon spectrum from 3D to 2D.
Atomically thin semiconductors have dimensions that are commensurate with critical feature sizes of future optoelectronic devices defined using electron/ion beam lithography. Robustness of their emergent optical and valleytronic properties is essential for typical exposure doses used during fabrication. Here, we explore how focused helium ion bombardment affects the intrinsic vibrational, luminescence and valleytronic properties of atomically thin MoS$_{2}$. By probing the disorder dependent vibrational response we deduce the interdefect distance by applying a phonon confinement model. We show that the increasing interdefect distance correlates with disorder-related luminescence arising 180 meV below the neutral exciton emission. We perform ab-initio density functional theory of a variety of defect related morphologies, which yield first indications on the origin of the observed additional luminescence. Remarkably, no significant reduction of free exciton valley polarization is observed until the interdefect distance approaches a few nanometers, namely the size of the free exciton Bohr radius. Our findings pave the way for direct writing of sub-10 nm nanoscale valleytronic devices and circuits using focused helium ions.
As a 2D ferromagnetic semiconductor with magnetic ordering, atomically thin chromium triiodide is the latest addition to the family of two-dimensional (2D) materials. However, realistic exploration of CrI3-based devices and heterostructures is challenging, due to its extreme instability under ambient conditions. Here we present Raman characterization of CrI3, and demonstrate that the main degradation pathway of CrI3 is the photocatalytic substitution of iodine by water. While simple encapsulation by Al2O3, PMMA and hexagonal BN (hBN) only leads to modest reduction in degradation rate, minimizing exposure of light markedly improves stability, and CrI3 sheets sandwiched between hBN layers are air-stable for >10 days. By monitoring the transfer characteristics of CrI3/graphene heterostructure over the course of degradation, we show that the aquachromium solution hole-dopes graphene.
Raman scattering and photoluminescence spectroscopy are used to investigate the optical properties of single layer black phosphorus obtained by mechanical exfoliation of bulk crystals under an argon atmosphere. The Raman spectroscopy, performed in situ on the same flake as the photoluminescence measurements, demonstrates the single layer character of the investigated samples. The emission spectra, dominated by excitonic effects, display the expected in plane anisotropy. The emission energy depends on the type of substrate on which the flake is placed due to the different dielectric screening. Finally, the blue shift of the emission with increasing temperature is well described using a two oscillator model for the temperature dependence of the band gap.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا