Do you want to publish a course? Click here

A spectroscopic test of the rotational modulation origin of periodic emph{Kepler} photometric variability of A-type stars

211   0   0.0 ( 0 )
 Added by James Sikora
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

High-precision space-based photometry obtained by the emph{Kepler} and emph{TESS} missions has revealed evidence of rotational modulation associated with main sequence (MS) A and late-B type stars. Generally, such variability in these objects is attributed to inhomogeneous surface structures (e.g. chemical spots), which are typically linked to strong magnetic fields ($Bgtrsim100,{rm G}$) visible at the surface. It has been reported that $approx44$~per~cent of all A-type stars observed during the emph{Kepler} mission exhibit rotationally modulated light curves. This is surprising considering that $lesssim10$~per~cent of all MS A-type stars are known to be strongly magnetic (i.e. they are Ap/Bp stars). We present a spectroscopic monitoring survey of 44 A and late-B type stars reported to exhibit rotational modulation in their emph{Kepler} light curves. The primary goal of this survey is to test the hypothesis that the variability is rotational modulation by comparing each stars rotational broadening ($vsin{i}$) with the equatorial velocities ($v_{rm eq}$) inferred from the photometric periods. We searched for chemical peculiarities and binary companions in order to provide insight into the origin of the apparent rotational modulation. We find that 14 stars in our sample have $vsin{i}>v_{rm eq}$ and/or have low-mass companions that may contribute to or be responsible for the observed variability. Our results suggest that more than $10$~per~cent of all MS A and late-B type stars may exhibit inhomogeneous surface structures; however, the incidence rate is likely $lesssim30$~per~cent.



rate research

Read More

This work brings a wavelet analysis for 14 Kepler white dwarf stars, in order to confirm their photometric variability behavior and to search for periodicities in these targets. From the observed Kepler light curves we obtained the wavelet local and global power spectra. Through this procedure, one can perform an analysis in time-frequency domain rich in details, and so to obtain a new perspective on the time evolution of the periodicities present in these stars. We identified a photometric variability behavior in ten white dwarfs, corresponding to period variations of ~ 2 h to 18 days: among these stars, three are new candidates and seven, earlier identified from other studies, are confirmed.
104 - James Sikora , Gregg A. Wade , 2017
A recent analysis of high precision photometry obtained using the Kepler spacecraft has revealed two surprising discoveries: (1) over 860 main sequence A-type stars -- approximately 40% of those identified in the Kepler field -- exhibit periodic variability that may be attributable to rotational modulation by spots and (2) many of their light curves indicate the presence of a mysterious and characteristic power spectral feature. We have been carrying out an ongoing analysis designed to expand upon these discoveries and to provide a possible explanation for the unusual power spectral features. In the following, we will put these recent discoveries into context as well as discuss the preliminary findings yielded by our analysis of the Kepler light curves.
The Kepler spacecraft is providing photometric time series with micro-magnitude precision for thousands of variable stars. The continuous time-series of unprecedented time span open up opportunities to study the pulsational variability in much more detail than was previously possible from the ground. We present a first general characterization of the variability of A-F type stars as observed in the Kepler light curves of a sample of 750 candidate A-F type stars, and investigate the relation between gamma Doradus, delta Scuti, and hybrid stars. Our results imply an investigation of pulsation mechanisms to supplement the kappa mechanism and convective blocking effect to drive hybrid pulsations and suggest a revision of the current observational instability strips of delta Scuti and gamma Doradus stars if the currently available values of effective temperature and surface gravity will be confirmed.
The analysis of the light curves of 48 B-type stars observed by Kepler is presented. Among these are 15 pulsating stars, all of which show low frequencies characteristic of SPB stars. Seven of these stars also show a few weak, isolated high frequencies and they could be considered as SPB/beta Cep hybrids. In all cases the frequency spectra are quite different from what is seen from ground-based observations. We suggest that this is because most of the low frequencies are modes of high degree which are predicted to be unstable in models of mid-B stars. We find that there are non-pulsating stars within the beta Cep and SPB instability strips. Apart from the pulsating stars, we can identify stars with frequency groupings similar to what is seen in Be stars but which are not Be stars. The origin of the groupings is not clear, but may be related to rotation. We find periodic variations in other stars which we attribute to proximity effects in binary systems or possibly rotational modulation. We find no evidence for pulsating stars between the cool edge of the SPB and the hot edge of the delta Sct instability strips. None of the stars show the broad features which can be attributed to stochastically-excited modes as recently proposed. Among our sample of B stars are two chemically peculiar stars, one of which is a HgMn star showing rotational modulation in the light curve.
The Kepler space mission provided near-continuous and high-precision photometry of about 207,000 stars, which can be used for asteroseismology. However, for successful seismic modelling it is equally important to have accurate stellar physical parameters. Therefore, supplementary ground-based data are needed. We report the results of the analysis of high-resolution spectroscopic data of A- and F-type stars from the Kepler field, which were obtained with the HERMES spectrograph on the Mercator telescope. We determined spectral types, atmospheric parameters and chemical abundances for a sample of 117 stars. Hydrogen Balmer, Fe I, and Fe II lines were used to derive effective temperatures, surface gravities, and microturbulent velocities. We determined chemical abundances and projected rotational velocities using a spectrum synthesis technique. The atmospheric parameters obtained were compared with those from the Kepler Input Catalogue (KIC), confirming that the KIC effective temperatures are underestimated for A stars. Effective temperatures calculated by spectral energy distribution fitting are in good agreement with those determined from the spectral line analysis. The analysed sample comprises stars with approximately solar chemical abundances, as well as chemically peculiar stars of the Am, Ap, and Lambda Boo types. The distribution of the projected rotational velocity, Vsini, is typical for A and F stars and ranges from 8 to about 280 km/s, with a mean of 134 km/s.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا