Do you want to publish a course? Click here

Experimental tests of Multiplicative Bell Inequalities

110   0   0.0 ( 0 )
 Added by Dilip Paneru
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bell inequalities are mathematical constructs that demarcate the boundary between quantum and classical physics. A new class of multiplicative Bell inequalities originating from a volume maximization game (based on products of correlators within bipartite systems) has been recently proposed. For these new Bell parameters, it is relatively easy to find the classical and quantum, i.e. Tsirelson, limits. Here, we experimentally test the Tsirelson bounds of these inequalities using polarisation-entangled photons for different number of measurements ($n$), each party can perform. For $n=2, 3, 4$, we report the experimental violation of local hidden variable theories. In addition, we experimentally compare the results with the parameters obtained from a fully deterministic strategy, and observe the conjectured nature of the ratio. Finally, utilizing the principle of relativistic independence encapsulating the locality of uncertainty relations, we theoretically derive and experimentally test new richer bounds for both the multiplicative and the additive Bell parameters for $n=2$. Our findings strengthen the correspondence between local and nonlocal correlations, and may pave the way for empirical tests of quantum mechanical bounds with inefficient detection systems.



rate research

Read More

Bell inequalities are important tools in contrasting classical and quantum behaviors. To date, most Bell inequalities are linear combinations of statistical correlations between remote parties. Nevertheless, finding the classical and quantum mechanical (Tsirelson) bounds for a given Bell inequality in a general scenario is a difficult task which rarely leads to closed-form solutions. Here we introduce a new class of Bell inequalities based on products of correlators that alleviate these issues. Each such Bell inequality is associated with a unique coordination game. In the simplest case, Alice and Bob, each having two random variables, attempt to maximize the area of a rectangle and the rectangles area is represented by a certain parameter. This parameter, which is a function of the correlations between their random variables, is shown to be a Bell parameter, i.e. the achievable bound using only classical correlations is strictly smaller than the achievable bound using non-local quantum correlations We continue by generalizing to the case in which Alice and Bob, each having now n random variables, wish to maximize a certain volume in n-dimensional space. We term this parameter a multiplicative Bell parameter and prove its Tsirelson bound. Finally, we investigate the case of local hidden variables and show that for any deterministic strategy of one of the players the Bell parameter is a harmonic function whose maximum approaches the Tsirelson bound as the number of measurement devices increases. Some theoretical and experimental implications of these results are discussed.
The violation of a Bell inequality is the paradigmatic example of device-independent quantum information: the nonclassicality of the data is certified without the knowledge of the functioning of devices. In practice, however, all Bell experiments rely on the precise understanding of the underlying physical mechanisms. Given that, it is natural to ask: Can one witness nonclassical behaviour in a truly black-box scenario? Here we propose and implement, computationally and experimentally, a solution to this ab-initio task. It exploits a robust automated optimization approach based on the Stochastic Nelder-Mead algorithm. Treating preparation and measurement devices as black-boxes, and relying on the observed statistics only, our adaptive protocol approaches the optimal Bell inequality violation after a limited number of iterations for a variety photonic states, measurement responses and Bell scenarios. In particular, we exploit it for randomness certification from unknown states and measurements. Our results demonstrate the power of automated algorithms, opening a new venue for the experimental implementation of device-independent quantum technologies.
We report on the experimental violation of multipartite Bell inequalities by entangled states of trapped ions. First we consider resource states for measurement-based quantum computation of between 3 and 7 ions and show that all strongly violate a Bell-type inequality for graph states, where the criterion for violation is a sufficiently high fidelity. Second we analyze GHZ states of up to 14 ions generated in a previous experiment using stronger Mermin-Klyshko inequalities, and show that in this case the violation of local realism increases exponentially with system size. These experiments represent a violation of multipartite Bell-type inequalities of deterministically prepared entangled states. In addition, the detection loophole is closed.
We apply a distance-based Bell-test analysis method [E. Knill et al., Phys. Rev. A. 91, 032105 (2015)] to three experimental data sets where conventional analyses failed or required additional assumptions. The first is produced from a new classical source exploiting a coincidence-time loophole for which standard analysis falsely shows a Bell violation. The second is from a source previously shown to violate a Bell inequality; the distance-based analysis agrees with the previous results but with fewer assumptions. The third data set does not show a violation with standard analysis despite the high source quality, but is shown to have a strong violation with the distance-based analysis method.
A technique, which we call homogenization, is applied to transform CH-type Bell inequalities, which contain lower order correlations, into CHSH-type Bell inequalities, which are defined for highest order correlation functions. A homogenization leads to inequalities involving more settings, that is a choice of one more observable is possible for each party. We show that this technique preserves the tightness of Bell inequalities: a homogenization of a tight CH-type Bell inequality is still a tight CHSH-type Bell inequality. As an example we obtain $3times3times3$ CHSH-type Bell inequalities by homogenization of $2times 2times 2$ CH-type Bell inequalities derived by Sliwa in [Phys. Lett. A {bf 317}, 165 (2003)].
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا