We construct few-body, interacting, nonlocal Hamiltonians with a quantum scar state in an otherwise thermalizing many-body spectrum. In one dimension, the embedded state is a critical state, and in two dimensions, the embedded state is a chiral topologically ordered state. The models are defined on slightly disordered lattices, and the scar state appears independent of the precise realization of the disorder. A parameter allows the scar state to be placed at any position in the spectrum. We show that the level spacing distributions are Wigner-Dyson and that the entanglement entropies of the states in the middle of the spectrum are close to the Page value. Finally, we confirm the topological order in the scar state by showing that one can insert anyons into the state.