Do you want to publish a course? Click here

Spin-induced black hole scalarization in Einstein-scalar-Gauss-Bonnet theory

152   0   0.0 ( 0 )
 Added by Emanuele Berti
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct black hole solutions with spin-induced scalarization in a class of models where a scalar field is quadratically coupled to the topological Gauss-Bonnet term. Starting from the tachyonically unstable Kerr solutions, we obtain families of scalarized black holes such that the scalar field has either even or odd parity, and we investigate their domain of existence. The scalarized black holes can violate the Kerr rotation bound. We identify critical families of scalarized black hole solutions such that the expansion of the metric functions and of the scalar field at the horizon no longer allows for real coefficients. For the quadratic coupling considered here, solutions with spin-induced scalarization are entropically favored over Kerr solutions with the same mass and angular momentum.



rate research

Read More

We study the dynamics of black holes in Einstein-scalar-Gauss-Bonnet theories that exhibit spontaneous black hole scalarization using recently introduced methods for solving the full, non-perturbative equations of motion. For one sign of the coupling parameter, non-spinning vacuum black holes are unstable to developing scalar hair, while for the other, instability only sets in for black holes with sufficiently large spin. We study scalarization in both cases, demonstrating that there is a range of parameter space where the theory maintains hyperbolic evolution and for which the instability saturates in a scalarized black hole that is stable without symmetry assumptions. However, this parameter space range is significantly smaller than the range for which stationary scalarized black hole solutions exist. We show how different choices for the subleading behavior of the Gauss-Bonnet coupling affect the dynamics of the instability and the final state, or lack thereof. Finally, we present mergers of binary black holes and demonstrate the imprint of the scalar hair in the gravitational radiation.
Spontaneous scalarization is a gravitational phenomenon in which deviations from general relativity arise once a certain threshold in curvature is exceeded, while being entirely absent below that threshold. For black holes, scalarization is known to be triggered by a coupling between a scalar and the Gauss-Bonnet invariant. A coupling with the Ricci scalar, which can trigger scalarization in neutron stars, is instead known to not contribute to the onset of black hole scalarization, and has so far been largely ignored in the literature when studying scalarized black holes. In this paper, we study the combined effect of both these couplings on black hole scalarization. We show that the Ricci coupling plays a significant role in the properties of scalarized solutions and their domain of existence. This work is an important step in the construction of scalarization models that evade binary pulsar constraints and have general relativity as a cosmological late-time attractor, while still predicting deviations from general relativity in black hole observations.
We study the post-Newtonian dynamics of black hole binaries in Einstein-scalar-Gauss-Bonnet gravity theories. To this aim we build static, spherically symmetric black hole solutions at fourth order in the Gauss-Bonnet coupling $alpha$. We then skeletonize these solutions by reducing them to point particles with scalar field-dependent masses, showing that this procedure amounts to fixing the Wald entropy of the black holes during their slow inspiral. The cosmological value of the scalar field plays a crucial role in the dynamics of the binary. We compute the two-body Lagrangian at first post-Newtonian order and show that no regularization procedure is needed to obtain the Gauss-Bonnet contributions to the fields, which are finite. We illustrate the power of our approach by Pade-resumming the so-called sensitivities, which measure the coupling of the skeletonized body to the scalar field, for some specific theories of interest.
107 - M. Bousder , M. Bennai 2021
We study the charge of the 4D-Einstein-Gauss-Bonnet black hole by a negative charge and a positive charge of a particle-antiparticle pair on the horizons r- and r+, respectively. We show that there are two types of the Schwarzschild black hole. We show also that the Einstein-Gauss-Bonnet black hole charge has quantified values. We obtain the Hawking-Bekenstein formula with two logarithmic corrections, the second correction depends on the cosmological constant and the black hole charge. Finally, we study the thermodynamics of the EGB-AdS black hole.
We study a hairy black hole solution in the dilatonic Einstein-Gauss-Bonnet theory of gravitation, in which the Gauss-Bonnet term is non-minimally coupled to the dilaton field. Hairy black holes with spherical symmetry seem to be easily constructed with a positive Gauss-Bonnet coefficient $alpha$ within the coupling function, $f(phi) = alpha e^{gamma phi}$, in an asymptotically flat spacetime, i.e., no-hair theorem seems to be easily evaded in this theory. Therefore, it is natural to ask whether this construction can be expanded into the case with the negative coefficient $alpha$. In this paper, we present numerically the dilaton black hole solutions with a negative $alpha$ and analyze the properties of GB term through the aspects of the black hole mass. We construct the new integral constraint allowing the existence of the hairy solutions with the negative $alpha$. Through this procedure, we expand the evasion of the no-hair theorem for hairy black hole solutions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا