No Arabic abstract
In this paper, we compute all possible differential structures of a $3$-dimensional DG Sklyanin algebra $mathcal{A}$, which is a connected cochain DG algebra whose underlying graded algebra $mathcal{A}^{#}$ is a $3$-dimensional Sklyanin algebra $S_{a,b,c}$. We show that there are three major cases depending on the parameters $a,b,c$ of the underlying Sklyanin algebra $S_{a,b,c}$: (1) either $a^2 eq b^2$ or $c eq 0$, then $partial_{mathcal{A}}=0$; (2) $a=-b$ and $c=0$, then the $3$-dimensional DG Sklyanin algebra is actually a DG polynomial algebra; and (3) $a=b$ and $c=0$, then the DG Sklyanin algebra is uniquely determined by a $3times 3$ matrix $M$. It is worthy to point out that case (2) has been systematically studied in cite{MGYC} and case (3) is just the DG algebra $mathcal{A}_{mathcal{O}_{-1}(k^3)}(M)$ in cite{MWZ}. We solve the problem on how to judge whether a given $3$-dimensional DG Sklyanin algebra is Calabi-Yau.
The Calabi-Yau property of cocommutative Hopf algebras is discussed by using the homological integral, a recently introduced tool for studying infinite dimensional AS-Gorenstein Hopf algebras. It is shown that the skew-group algebra of a universal enveloping algebra of a finite dimensional Lie algebra $g$ with a finite subgroup $G$ of automorphisms of $g$ is Calabi-Yau if and only if the universal enveloping algebra itself is Calabi-Yau and $G$ is a subgroup of the special linear group $SL(g)$. The Noetherian cocommutative Calabi-Yau Hopf algebras of dimension not larger than 3 are described. The Calabi-Yau property of Sridharan enveloping algebras of finite dimensional Lie algebras is also discussed. We obtain some equivalent conditions for a Sridharan enveloping algebra to be Calabi-Yau, and then partly answer a question proposed by Berger. We list all the nonisomorphic 3-dimensional Calabi-Yau Sridharan enveloping algebras.
We prove that multiplicative preprojective algebras, defined by Crawley-Boevey and Shaw, are 2-Calabi-Yau algebras, in the case of quivers containing unoriented cycles. If the quiver is not itself a cycle, we show that the center is trivial, and hence the Calabi-Yau structure is unique. If the quiver is a cycle, we show that the algebra is a non-commutative crepant resolution of its center, the ring of functions on the corresponding multiplicative quiver variety with a type A surface singularity. We also prove that the
We give an explicit formula showing how the double Poisson algebra introduced in cite{VdB} appears as a particular part of a pre-Calabi-Yau structure, i.e. cyclically invariant, with respect to the natural inner form, solution of the Maurer-Cartan equation on $Aoplus A^*$. Specific part of this solution is described, which is in one-to-one correspondence with the double Poisson algebra structures. The result holds for any associative algebra $A$ and emphasizes the special role of the fourth component of a pre-Calabi-Yau structure in this respect. As a consequence we have that appropriate pre-Calabi-Yau structures induce a Poisson brackets on representation spaces $({rm Rep}_n A)^{Gl_n}$ for any associative algebra $A$.
We provide a construction of minimal injective resolutions of simple comodules of path coalgebras of quivers with relations. Dual to Calabi-Yau condition of algebras, we introduce the Calabi-Yau condition to coalgebras. Then we give some descriptions of Calabi-Yau coalgebras with lower global dimensions. An appendix is included for listing some properties of cohom functors.
In this paper, we introduce and study differential graded (DG for short) polynomial algebras. In brief, a DG polynomial algebra $mathcal{A}$ is a connected cochain DG algebra such that its underlying graded algebra $mathcal{A}^{#}$ is a polynomial algebra $mathbb{k}[x_1,x_2,cdots, x_n]$ with $|x_i|=1$, for any $iin {1,2,cdots, n}$. We describe all possible differential structures on DG polynomial algebras; compute their DG automorphism groups; study their isomorphism problems; and show that they are all homologically smooth and Gorestein DG algebras. Furthermore, it is proved that the DG polynomial algebra $mathcal{A}$ is a Calabi-Yau DG algebra when its differential $partial_{mathcal{A}} eq 0$ and the trivial DG polynomial algebra $(mathcal{A}, 0)$ is Calabi-Yau if and only if $n$ is an odd integer.