Disentangling Jet Modification


Abstract in English

Jet modification in heavy-ion collisions is an important probe of the nature and structure of the quark-gluon plasma (QGP) produced in these collisions and also encodes information about how the wakes that jets excite in a droplet of QGP form and relax. However, in experiment, one cannot know what a particular jet in a heavy ion collision would have looked like without quenching, making it difficult to interpret measurements in terms of individual jet modification. The goal of this Monte Carlo study is to gain insight into the modification of jet observables using the hybrid strong/weak coupling model of jet quenching as a test bed. In this Monte Carlo study (but not in experiment) it is possible to watch $textit{the same jet}$ as it evolves in vacuum or in QGP. We use this ability to disentangle the effects of modification of individual jets in heavy ion collisions vs. the effects of differing selection bias on the distribution of two observables: fractional energy loss and groomed $Delta R$. We find that in the hybrid model the distribution of groomed $Delta R$ appears to be unmodified in a sample of jets selected after quenching, as in heavy ion collisions, and confirm that this lack of modification arises because of a selection bias toward jets that lose only a small fraction of their energy. If instead we select jets in a way that avoids this bias, and then follow these selected jets as they are quenched, we show that there is, in fact, a substantial modification of the $Delta R$ of individual jets. We show that this jet modification is principally due to the incorporation of particles coming from the wake that the parton shower excites in the plasma as a component of what an experimentalist reconstructs as a jet. The effects we discuss are substantial in magnitude, suggesting that our qualitative conclusions are more general than the Monte Carlo study in which we obtain them.

Download