Do you want to publish a course? Click here

GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training

250   0   0.0 ( 0 )
 Added by Tianle Cai
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Normalization is known to help the optimization of deep neural networks. Curiously, different architectures require specialized normalization methods. In this paper, we study what normalization is effective for Graph Neural Networks (GNNs). First, we adapt and evaluate the existing methods from other domains to GNNs. Faster convergence is achieved with InstanceNorm compared to BatchNorm and LayerNorm. We provide an explanation by showing that InstanceNorm serves as a preconditioner for GNNs, but such preconditioning effect is weaker with BatchNorm due to the heavy batch noise in graph datasets. Second, we show that the shift operation in InstanceNorm results in an expressiveness degradation of GNNs for highly regular graphs. We address this issue by proposing GraphNorm with a learnable shift. Empirically, GNNs with GraphNorm converge faster compared to GNNs using other normalization. GraphNorm also improves the generalization of GNNs, achieving better performance on graph classification benchmarks.



rate research

Read More

Effective hyper-parameter tuning is essential to guarantee the performance that neural networks have come to be known for. In this work, a principled approach to choosing the learning rate is proposed for shallow feedforward neural networks. We associate the learning rate with the gradient Lipschitz constant of the objective to be minimized while training. An upper bound on the mentioned constant is derived and a search algorithm, which always results in non-divergent traces, is proposed to exploit the derived bound. It is shown through simulations that the proposed search method significantly outperforms the existing tuning methods such as Tree Parzen Estimators (TPE). The proposed method is applied to three different existing applications: a) channel estimation in OFDM systems, b) prediction of the exchange currency rates and c) offset estimation in OFDM receivers, and it is shown to pick better learning rates than the existing methods using the same or lesser compute power.
Graph representation learning has emerged as a powerful technique for addressing real-world problems. Various downstream graph learning tasks have benefited from its recent developments, such as node classification, similarity search, and graph classification. However, prior arts on graph representation learning focus on domain specific problems and train a dedicated model for each graph dataset, which is usually non-transferable to out-of-domain data. Inspired by the recent advances in pre-training from natural language processing and computer vision, we design Graph Contrastive Coding (GCC) -- a self-supervised graph neural network pre-training framework -- to capture the universal network topological properties across multiple networks. We design GCCs pre-training task as subgraph instance discrimination in and across networks and leverage contrastive learning to empower graph neural networks to learn the intrinsic and transferable structural representations. We conduct extensive experiments on three graph learning tasks and ten graph datasets. The results show that GCC pre-trained on a collection of diverse datasets can achieve competitive or better performance to its task-specific and trained-from-scratch counterparts. This suggests that the pre-training and fine-tuning paradigm presents great potential for graph representation learning.
Deep neural networks (DNNs) frequently contain far more weights, represented at a higher precision, than are required for the specific task which they are trained to perform. Consequently, they can often be compressed using techniques such as weight pruning and quantization that reduce both the model size and inference time without appreciable loss in accuracy. However, finding the best compression strategy and corresponding target sparsity for a given DNN, hardware platform, and optimization objective currently requires expensive, frequently manual, trial-and-error experimentation. In this paper, we introduce a programmable system for model compression called Condensa. Users programmatically compose simple operators, in Python, to build more complex and practically interesting compression strategies. Given a strategy and user-provided objective (such as minimization of running time), Condensa uses a novel Bayesian optimization-based algorithm to automatically infer desirable sparsities. Our experiments on four real-world DNNs demonstrate memory footprint and hardware runtime throughput improvements of 188x and 2.59x, respectively, using at most ten samples per search. We have released a reference implementation of Condensa at https://github.com/NVlabs/condensa.
Federated learning (FL) is a popular technique to train machine learning (ML) models on decentralized data sources. In order to sustain long-term participation of data owners, it is important to fairly appraise each data source and compensate data owners for their contribution to the training process. The Shapley value (SV) defines a unique payoff scheme that satisfies many desiderata for a data value notion. It has been increasingly used for valuing training data in centralized learning. However, computing the SV requires exhaustively evaluating the model performance on every subset of data sources, which incurs prohibitive communication cost in the federated setting. Besides, the canonical SV ignores the order of data sources during training, which conflicts with the sequential nature of FL. This paper proposes a variant of the SV amenable to FL, which we call the federated Shapley value. The federated SV preserves the desirable properties of the canonical SV while it can be calculated without incurring extra communication cost and is also able to capture the effect of participation order on data value. We conduct a thorough empirical study of the federated SV on a range of tasks, including noisy label detection, adversarial participant detection, and data summarization on different benchmark datasets, and demonstrate that it can reflect the real utility of data sources for FL and has the potential to enhance system robustness, security, and efficiency. We also report and analyze failure cases and hope to stimulate future research.
Many optimizers have been proposed for training deep neural networks, and they often have multiple hyperparameters, which make it tricky to benchmark their performance. In this work, we propose a new benchmarking protocol to evaluate both end-to-end efficiency (training a model from scratch without knowing the best hyperparameter) and data-addition training efficiency (the previously selected hyperparameters are used for periodically re-training the model with newly collected data). For end-to-end efficiency, unlike previous work that assumes random hyperparameter tuning, which over-emphasizes the tuning time, we propose to evaluate with a bandit hyperparameter tuning strategy. A human study is conducted to show that our evaluation protocol matches human tuning behavior better than the random search. For data-addition training, we propose a new protocol for assessing the hyperparameter sensitivity to data shift. We then apply the proposed benchmarking framework to 7 optimizers and various tasks, including computer vision, natural language processing, reinforcement learning, and graph mining. Our results show that there is no clear winner across all the tasks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا