No Arabic abstract
Current archives of the LAMOST telescope contain millions of pipeline-processed spectra that have probably never been seen by human eyes. Most of the rare objects with interesting physical properties, however, can only be identified by visual analysis of their characteristic spectral features. A proper combination of interactive visualisation with modern machine learning techniques opens new ways to discover such objects. We apply active learning classification supported by deep convolutional networks to automatically identify complex emission-line shapes in multi-million spectra archives. We used the pool-based uncertainty sampling active learning driven by a custom-designed deep convolutional neural network with 12 layers inspired by VGGNet, AlexNet, and ZFNet, but adapted for one-dimensional feature vectors. The unlabelled pool set is represented by 4.1 million spectra from the LAMOST DR2 survey. The initial training of the network was performed on a labelled set of about 13000 spectra obtained in the region around H$alpha$ by the 2m Perek telescope of the Ondv{r}ejov observatory, which mostly contains spectra of Be and related early-type stars. The differences between the Ondv{r}ejov intermediate-resolution and the LAMOST low-resolution spectrographs were compensated for by Gaussian blurring. After several iterations, the network was able to successfully identify emission-line stars with an error smaller than 6.5%. Using the technology of the Virtual Observatory to visualise the results, we discovered 1013 spectra of 948 new candidates of emission-line objects in addition to 664 spectra of 549 objects that are listed in SIMBAD and 2644 spectra of 2291 objects identified in an earlier paper of a Chinese group led by Wen Hou. The most interesting objects with unusual spectral properties are discussed in detail.
With the increasing penetration of renewable energy, frequency response and its security are of significant concerns for reliable power system operations. Frequency-constrained unit commitment (FCUC) is proposed to address this challenge. Despite existing efforts in modeling frequency characteristics in unit commitment (UC), current strategies can only handle oversimplified low-order frequency response models and do not consider wide-range operating conditions. This paper presents a generic data-driven framework for FCUC under high renewable penetration. Deep neural networks (DNNs) are trained to predict the frequency response using real data or high-fidelity simulation data. Next, the DNN is reformulated as a set of mixed-integer linear constraints to be incorporated into the ordinary UC formulation. In the data generation phase, all possible power injections are considered, and a region-of-interests active sampling is proposed to include power injection samples with frequency nadirs closer to the UFLC threshold, which significantly enhances the accuracy of frequency constraints in FCUC. The proposed FCUC is verified on the the IEEE 39-bus system. Then, a full-order dynamic model simulation using PSS/E verifies the effectiveness of FCUC in frequency-secure generator commitments.
Deconvolution of large survey images with millions of galaxies requires to develop a new generation of methods which can take into account a space variant Point Spread Function (PSF) and have to be at the same time accurate and fast. We investigate in this paper how Deep Learning (DL) could be used to perform this task. We employ a U-Net Deep Neural Network (DNN) architecture to learn in a supervised setting parameters adapted for galaxy image processing and study two strategies for deconvolution. The first approach is a post-processing of a mere Tikhonov deconvolution with closed form solution and the second one is an iterative deconvolution framework based on the Alternating Direction Method of Multipliers (ADMM). Our numerical results based on GREAT3 simulations with realistic galaxy images and PSFs show that our two approaches outperforms standard techniques based on convex optimization, whether assessed in galaxy image reconstruction or shape recovery. The approach based on Tikhonov deconvolution leads to the most accurate results except for ellipticity errors at high signal to noise ratio where the ADMM approach performs slightly better, is also more computation-time efficient to process a large number of galaxies, and is therefore recommended in this scenario.
We outline an approach yielding proper motions with higher precision than exists in present catalogs for a sample of stars in the Kepler field. To increase proper motion precision we combine first moment centroids of Kepler pixel data from a single Season with existing catalog positions and proper motions. We use this astrometry to produce improved reduced proper motion diagrams, analogous to a Hertzsprung-Russell diagram, for stars identified as Kepler Objects of Interest. The more precise the relative proper motions, the better the discrimination between stellar luminosity classes. With UCAC4 and PPMXL epoch 2000 positions (and proper motions from those catalogs as quasi-bayesian priors) astrometry for a single test Channel (21) and Season (0) spanning two years yields proper motions with an average per-coordinate proper motion error of 1.0 millisecond of arc per year, over a factor of three better than existing catalogs. We apply a mapping between a reduced proper motion diagram and an HR diagram, both constructed using HST parallaxes and proper motions, to estimate Kepler Object of Interest K-band absolute magnitudes. The techniques discussed apply to any future small-field astrometry as well as the rest of the Kepler field.
In this work we apply and expand on a recently introduced outlier detection algorithm that is based on an unsupervised random forest. We use the algorithm to calculate a similarity measure for stellar spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE). We show that the similarity measure traces non-trivial physical properties and contains information about complex structures in the data. We use it for visualization and clustering of the dataset, and discuss its ability to find groups of highly similar objects, including spectroscopic twins. Using the similarity matrix to search the dataset for objects allows us to find objects that are impossible to find using their best fitting model parameters. This includes extreme objects for which the models fail, and rare objects that are outside the scope of the model. We use the similarity measure to detect outliers in the dataset, and find a number of previously unknown Be-type stars, spectroscopic binaries, carbon rich stars, young stars, and a few that we cannot interpret. Our work further demonstrates the potential for scientific discovery when combining machine learning methods with modern survey data.