Do you want to publish a course? Click here

A graphical approach to carbon-efficient spot market scheduling for Power-to-X applications

185   0   0.0 ( 0 )
 Added by Bo Tranberg
 Publication date 2020
  fields Economy Financial
and research's language is English




Ask ChatGPT about the research

In the Paris agreement of 2015, it was decided to reduce the CO2 emissions of the energy sector to zero by 2050 and to restrict the global mean temperature increase to 1.5 degree Celcius above the pre-industrial level. Such commitments are possible only with practically CO2-free power generation based on variable renewable technologies. Historically, the main point of criticism regarding renewable power is the variability driven by weather dependence. Power-to-X systems, which convert excess power to other stores of energy for later use, can play an important role in offsetting the variability of renewable power production. In order to do so, however, these systems have to be scheduled properly to ensure they are being powered by low-carbon technologies. In this paper, we introduce a graphical approach for scheduling power-to-X plants in the day-ahead market by minimizing carbon emissions and electricity costs. This graphical approach is simple to implement and intuitively explain to stakeholders. In a simulation study using historical prices and CO2 intensity for four different countries, we find that the price and CO2 intensity tends to decrease with increasing scheduling horizon. The effect diminishes when requiring an increasing amount of full load hours per year. Additionally, investigating the trade-off between optimizing for price or CO2 intensity shows that it is indeed a trade-off: it is not possible to obtain the lowest price and CO2 intensity at the same time.



rate research

Read More

We propose a general methodology to measure labour market dynamics, inspired by the search and matching framework, based on the estimate of the transition rates between labour market states. We show how to estimate instantaneous transition rates starting from discrete time observations provided in longitudinal datasets, allowing for any number of states. We illustrate the potential of such methodology using Italian labour market data. First, we decompose the unemployment rate fluctuations into inflow and outflow driven components; then, we evaluate the impact of the implementation of a labour market reform, which substantially changed the regulations of temporary contracts.
Productivity levels and growth are extremely heterogeneous among firms. A vast literature has developed to explain the origins of productivity shocks, their dispersion, evolution and their relationship to the business cycle. We examine in detail the distribution of labor productivity levels and growth, and observe that they exhibit heavy tails. We propose to model these distributions using the four parameter L{e}vy stable distribution, a natural candidate deriving from the generalised Central Limit Theorem. We show that it is a better fit than several standard alternatives, and is remarkably consistent over time, countries and sectors. In all samples considered, the tail parameter is such that the theoretical variance of the distribution is infinite, so that the sample standard deviation increases with sample size. We find a consistent positive skewness, a markedly different behaviour between the left and right tails, and a positive relationship between productivity and size. The distributional approach allows us to test different measures of dispersion and find that productivity dispersion has slightly decreased over the past decade.
We attempt to reconcile Gabaix and Koijens (GK) recent Inelastic Market Hypothesis with the order-driven view of markets that emerged within the microstructure literature in the past 20 years. We review the most salient empirical facts and arguments that give credence to the idea that market price fluctuations are mostly due to order flow, whether informed or non-informed. We show that the Latent Liquidity Theory of price impact makes a precise prediction for GKs multiplier $M$, which measures by how many dollars, on average, the market value of a company goes up if one buys one dollar worth of its stocks. Our central result is that $M$ increases with the volatility of the stock and decreases with the fraction of the market cap. that is traded daily. We discuss several empirical results suggesting that the lions share of volatility is due to trading activity.
In this paper we develop a novel method of wholesale electricity market modeling. Our optimization-based model decomposes wholesale supply and demand curves into buy and sell orders of individual market participants. In doing so, the model detects and removes arbitrage orders. As a result, we construct an innovative fundamental model of a wholesale electricity market. First, our fundamental demand curve has a unique composition. The demand curve lies in between the wholesale demand curve and a perfectly inelastic demand curve. Second, our fundamental supply and demand curves contain only actual (i.e. non-arbitrage) transactions with physical assets on buy and sell sides. Third, these transactions are designated to one of the three groups of wholesale electricity market participants: retailers, suppliers, or utility companies. To evaluate the performance of our model, we use the German wholesale market data. Our fundamental model yields a more precise approximation of the actual load values than a model with perfectly inelastic demand. Moreover, we conduct a study of wholesale demand elasticities. The obtained conclusions regarding wholesale demand elasticity are consistent with the existing academic literature.
Which and how many attributes are relevant for the sorting of agents in a matching market? This paper addresses these questions by constructing indices of mutual attractiveness that aggregate information about agents attributes. The first k indices for agents on each side of the market provide the best approximation of the matching surplus by a k-dimensional model. The methodology is applied on a unique Dutch households survey containing information about education, height, BMI, health, attitude toward risk and personality traits of spouses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا