No Arabic abstract
Half-Heusler compounds exhibit a remarkable variety of emergent properties such as heavy-fermion behaviour, unconventional superconductivity and magnetism. Several of these compounds have been predicted to host topologically non-trivial electronic structures. Remarkably, recent theoretical studies have indicated the possibility to induce non-trivial topological surface states in an otherwise trivial half-Heusler system by strain engineering. Here, using magneto-transport measurements and first principles DFT-based simulations, we demonstrate topological surface states on strained [110] oriented thin films of YPdBi grown on (100) MgO. These topological surface states arise in an otherwise trivial semi-metal purely driven by strain. Furthermore, we observe the onset of superconductivity in these strained films highlighting the possibility of engineering a topological superconducting state. Our results demonstrate the critical role played by strain in engineering novel topological states in thin film systems for developing next-generation spintronic devices.
We show that using epitaxial strain and chemical pressure in orthorhombic YMnO3 and Co-substituted (YMn0.95Co0.05O3) thin films, a ferromagnetic response can be gradually introduced and tuned. These results, together with the measured anisotropy of the magnetic response, indicate that the unexpected observation of ferromagnetism in orthorhombic o-RMnO3 (R= Y, Ho, Tb, etc) films originates from strain-driven breaking of the fully compensated magnetic ordering by pushing magnetic moments away from the antiferromagnetic [010] axis. We show that the resulting canting angle and the subsequent ferromagnetic response, gradually increase (up to ~ 1.2degree) by compression of the unit cell. We will discuss the relevance of these findings, in connection to the magnetoelectric response of orthorhombic manganites.
We present a methodology based on textit{ex-situ} (post-growth) electrochemistry to control the oxygen concentration in thin films of the superconducting oxide La$_2$CuO$_{4+y}$ grown epitaxially on substrates of isostructural LaSrAlO$_4$. The superconducting transition temperature, which depends on the oxygen concentration, can be tuned by adjusting the pH level of the base solution used for the electrochemical reaction. As our main finding, we demonstrate that the dopant oxygens can either occupy the interstitial layer in an orientationally disordered state or organize into a crystalline phase via a mechanism in which dopant oxygens are inserted into the substrate, changing the lattice symmetry of both the substrate and the epitaxial film. We discuss this mechanism, and describe the resulting methodology as a platform to be explored in thin films of other transition metal oxides.
Epitaxial titanium diboride thin films have been deposited on sapphire substrates by Pulsed Laser Ablation technique. Structural properties of the films have been studied during the growth by Reflection High Energy Electron Diffraction (RHEED) and ex-situ by means of X-ray diffraction techniques; both kinds of measurements indicate a good crystallographic orientation of the TiB2 film both in plane and along the c axis. A flat surface has been observed by Atomic Force Microscopy imaging. Electrical resistivity at room temperature resulted to be five times higher than the value reported for single crystals. The films resulted to be also very stable at high temperature, which is very promising for using this material as a buffer layer in the growth of magnesium diboride thin films.
In ideal topological insulator (TI) films the bulk state, which is supposed to be insulating, should not provide any electric coupling between the two metallic surfaces. However, transport studies on existing TI films show that the topological states on opposite surfaces are electrically tied to each other at thicknesses far greater than the direct coupling limit where the surface wavefunctions overlap. Here, we show that as the conducting bulk channels are suppressed, the parasitic coupling effect diminishes and the decoupled surface channels emerge as expected for ideal TIs. In Bi2Se3 thin films with fully suppressed bulk states, the two surfaces, which are directly coupled below ~10 QL, become gradually isolated with increasing thickness and are completely decoupled beyond ~20 QL. On such a platform, it is now feasible to implement transport devices whose functionality relies on accessing the individual surface layers without any deleterious coupling effects.
Epitaxial thin films of SrRuO3 with large strain disorder were grown using pulsed laser deposition method which showed two distinct transition temperatures in Magnetic measurements. For the first time, we present visual evolution of magnetic domains across the two transitions using Magnetic force microscopy on these films. The study clearly showed that the magnetic anisotropy corresponding to the two transitions is different. It is observed that the perpendicular magnetic anisotropy is dominating in films which results in domain spin orientation preferably in out of plane direction. The Raman studies showed that the lattice is highly influenced by the magnetic order. The analysis of the phonon spectra around magnetic transition reveals the existence of strong spin-phonon coupling and the calculations resulted in spin-phonon coupling strength ({lambda}) values of {lambda} ~ 5 cm-1 and {lambda} ~ 8.5 cm-1, for SrRuO3 films grown on LSAT and SrTiO3 single crystal substrates, respectively.