No Arabic abstract
A collisional model of a confined quasi-two-dimensional granular mixture is considered to analyze homogeneous steady states. The model includes an effective mechanism to transfer the kinetic energy injected by vibration in the vertical direction to the horizontal degrees of freedom of grains. The set of Enskog kinetic equations for the velocity distribution functions of each component is derived first to analyze the homogeneous state. As in the one-component case, an exact scaling solution is found where the time dependence of the distribution functions occurs entirely through the granular temperature $T$. As expected, the kinetic partial temperatures $T_i$ of each component are different and hence, energy equipartition is broken down. In the steady state, explicit expressions for the temperature $T$ and the ratio of partial kinetic temperatures $T_i/T_j$ are obtained by considering Maxwellian distributions defined at the partial temperatures $T_i$. The (scaled) granular temperature and the temperature ratios are given in terms of the coefficients of restitution, the solid volume fraction, the (scaled) parameters of the collisional model, and the ratios of mass, concentration, and diameters. In the case of a binary mixture, the theoretical predictions are exhaustively compared with both direct simulation Monte Carlo and molecular dynamics simulations with a good agreement. The deviations are identified to be originated in the non-Gaussianity of the velocity distributions and on microsegregation patterns, which induce spatial correlations not captured in the Enskog theory.
A linear stability analysis of the hydrodynamic equations of a model for confined quasi-two-dimensional granular gases is carried out. The stability analysis is performed around the homogeneous steady state (HSS) reached eventually by the system after a transient regime. In contrast to previous studies (which considered dilute or quasielastic systems), our analysis is based on the results obtained from the inelastic Enskog kinetic equation, which takes into account the (nonlinear) dependence of the transport coefficients and the cooling rate on dissipation and applies to moderate densities. As in earlier studies, the analysis shows that the HSS is linearly stable with respect to long enough wavelength excitations.
The Navier--Stokes transport coefficients for a model of a confined quasi-two-dimensional granular binary mixture of inelastic hard spheres are determined from the Boltzmann kinetic equation. A normal or hydrodynamic solution to the Boltzmann equation is obtained via the Chapman--Enskog method for states near the local version of the homogeneous time-dependent state. The mass, momentum, and heat fluxes are determined to first order in the spatial gradients of the hydrodynamic fields, and the associated transport coefficients are identified. As expected, they are given in terms of the solutions of a set of coupled linear integral equations. In addition, in contrast to previous results obtained for low-density granular mixtures, there are also nonzero contributions to the first-order approximations to the partial temperatures $T_i^{(1)}$ and the cooling rate $zeta^{(1)}$. Explicit forms for the diffusion transport coefficients, the shear viscosity coefficient, and the quantities $T_i^{(1)}$ and $zeta^{(1)}$ are obtained by assuming the steady-state conditions and by considering the leading terms in a Sonine polynomial expansion. The above transport coefficients are given in terms of the coefficients of restitution, concentration, and the masses and diameters of the components of the mixture. The results apply in principle for arbitrary degree of inelasticity and are not limited to specific values of concentration, mass and/or size ratios. As a simple application of these results, the violation of the Onsager reciprocal relations for a confined granular mixture is quantified in terms of the parameter space of the problem.
The shear viscosity in the dilute regime of a model for confined granular matter is studied by simulations and kinetic theory. The model consists on projecting into two dimensions the motion of vibrofluidized granular matter in shallow boxes by modifying the collision rule: besides the restitution coefficient that accounts for the energy dissipation, there is a separation velocity that is added in each collision in the normal direction. The two mechanisms balance on average, producing stationary homogeneous states. Molecular dynamics simulations show that in the steady state the distribution function departs from a Maxwellian, with cumulants that remain small in the whole range of inelasticities. The shear viscosity normalized with stationary temperature presents a clear dependence with the inelasticity, taking smaller values compared to the elastic case. A Boltzmann-like equation is built and analyzed using linear response theory. It is found that the predictions show an excellent agreement with the simulations when the correct stationary distribution is used but a Maxwellian approximation fails in predicting the inelasticity dependence of the viscosity. These results confirm that transport coefficients depend strongly on the mechanisms that drive them to stationary states.
We investigate the segregation of a dense binary mixture of granular particles that only differ in their restitution coefficient. The mixture is vertically vibrated in the presence of gravity. We find a partial segregation of the species, where most dissipative particles submerge in the less dissipative ones. The segregation occurs even if one type of the particles is elastic. In order to have a complete description of the system, we study the structure of the fluid at microscopic scale (few particle diameters). The density and temperature pair distribution functions show strong enhancements respect the equilibrium ones at the same density. In particular, there is an increase in the probability that the more inelastic particles group together in pairs (microsegregation). Microscopically the segregation is buoyancy driven, by the appearance of a dense and cold region around the more inelastic particles.
In this thesis we have used Quantum Monte Carlo techniques to study two systems that can be regarded as the archetype for neutral strongly interacting systems: 4He, and its fermionic counterpart 3He.More specifically, we have used the Path Integral Ground State and the Path Integral Monte Carlo methods to study a system of two dimensional 3He (2d-3He) and a system of 4He adsorbed on Graphene-Fluoride (GF) and Graphane (GH) at both zero and finite temperature. The purpose of the study of 4He on GF (GH) was the research of new physical phenomena, whereas in the case of 2d-3He it was the application of novel methodologies for the ab-initio study of static and dynamic properties of Fermi systems. In the case of 2d-3He we have computed the spin susceptibility as function of density which turned out to be in very good agreement with experimental data; we have also obtained the first ab-initio evaluation of the zero-sound mode and the dynamic structure factor of 2d-3He that is in remarkably good agreement with experiments. In the case of 4He adsorbed on GF (GH), we determined the zero temperature equilibrium density of the first monolayer of 4He showing also that the commensurate sqrt(3) x sqrt(3) R30 phase is unstable on both substrates; at equilibrium density we found that 4He on GF (GH) is a modulated superfluid with an anisotropic phono-rotonic spectrum; at high coverages we found an incommensurate triangular solid and, on both GF and GH, a commensurate phase at filling factor x= 2/7 that is locally stable or at least metastable. Remarkably, in this commensurate solid phase and for both GF and GH, our computations show preliminary evidence of the presence of a superfluid fraction.