Do you want to publish a course? Click here

A Simpler NP-Hardness Proof for Familial Graph Compression

79   0   0.0 ( 0 )
 Added by Zohair Raza Hassan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This document presents a simpler proof showcasing the NP-hardness of Familial Graph Compression.



rate research

Read More

We give a new proof of the fact that the parallel repetition of the (3-player) GHZ game reduces the value of the game to zero polynomially quickly. That is, we show that the value of the $n$-fold GHZ game is at most $n^{-Omega(1)}$. This was first established by Holmgren and Raz [HR20]. We present a new proof of this theorem that we believe to be simpler and more direct. Unlike most previous works on parallel repetition, our proof makes no use of information theory, and relies on the use of Fourier analysis. The GHZ game [GHZ89] has played a foundational role in the understanding of quantum information theory, due in part to the fact that quantum strategies can win the GHZ game with probability 1. It is possible that improved parallel repetition bounds may find applications in this setting. Recently, Dinur, Harsha, Venkat, and Yuen [DHVY17] highlighted the GHZ game as a simple three-player game, which is in some sense maximally far from the class of multi-player games whose behavior under parallel repetition is well understood. Dinur et al. conjectured that parallel repetition decreases the value of the GHZ game exponentially quickly, and speculated that progress on proving this would shed light on parallel repetition for general multi-player (multi-prover) games.
79 - Joshua A. Grochow 2016
Mahaneys Theorem states that, assuming $mathsf{P} eq mathsf{NP}$, no NP-hard set can have a polynomially bounded number of yes-instances at each input length. We give an exposition of a very simple unpublished proof of Manindra Agrawal whose ideas appear in Agrawal-Arvind (Geometric sets of low information content, Theoret. Comp. Sci., 1996). This proof is so simple that it can easily be taught to undergraduates or a general graduate CS audience - not just theorists! - in about 10 minutes, which the author has done successfully several times. We also include applications of Mahaneys Theorem to fundamental questions that bright undergraduates would ask which could be used to fill the remaining hour of a lecture, as well as an application (due to Ikenmeyer, Mulmuley, and Walter, arXiv:1507.02955) to the representation theory of the symmetric group and the Geometric Complexity Theory Program. To this author, the fact that sparsity results on NP-complete sets have an application to classical questions in representation theory says that they are not only a gem of classical theoretical computer science, but indeed a gem of mathematics.
62 - Tianrong Lin 2020
This short note present a proof of $P eq NP$. The proof with double quotation marks is to indicate that we do not know whether the proof is correct or not.
Using the probability theory-based approach, this paper reveals the equivalence of an arbitrary NP-complete problem to a problem of checking whether a level set of a specifically constructed harmonic cost function (with all diagonal entries of its Hessian matrix equal to zero) intersects with a unit hypercube in many-dimensional Euclidean space. This connection suggests the possibility that methods of continuous mathematics can provide crucial insights into the most intriguing open questions in modern complexity theory.
In the Nikoli pencil-and-paper game Tatamibari, a puzzle consists of an $m times n$ grid of cells, where each cell possibly contains a clue among +, -, |. The goal is to partition the grid into disjoint rectangles, where every rectangle contains exactly one clue, rectangles containing + are square, rectangles containing - are strictly longer horizontally than vertically, rectangles containing | are strictly longer vertically than horizontally, and no four rectangles share a corner. We prove this puzzle NP-complete, establishing a Nikoli gap of 16 years. Along the way, we introduce a gadget framework for proving hardness of similar puzzles involving area coverage, and show that it applies to an existing NP-hardness proof for Spiral Galaxies. We also present a mathematical puzzle font for Tatamibari.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا