Do you want to publish a course? Click here

Max-Fusion U-Net for Multi-Modal Pathology Segmentation with Attention and Dynamic Resampling

58   0   0.0 ( 0 )
 Added by Haochuan Jiang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Automatic segmentation of multi-sequence (multi-modal) cardiac MR (CMR) images plays a significant role in diagnosis and management for a variety of cardiac diseases. However, the performance of relevant algorithms is significantly affected by the proper fusion of the multi-modal information. Furthermore, particular diseases, such as myocardial infarction, display irregular shapes on images and occupy small regions at random locations. These facts make pathology segmentation of multi-modal CMR images a challenging task. In this paper, we present the Max-Fusion U-Net that achieves improved pathology segmentation performance given aligned multi-modal images of LGE, T2-weighted, and bSSFP modalities. Specifically, modality-specific features are extracted by dedicated encoders. Then they are fused with the pixel-wise maximum operator. Together with the corresponding encoding features, these representations are propagated to decoding layers with U-Net skip-connections. Furthermore, a spatial-attention module is applied in the last decoding layer to encourage the network to focus on those small semantically meaningful pathological regions that trigger relatively high responses by the network neurons. We also use a simple image patch extraction strategy to dynamically resample training examples with varying spacial and batch sizes. With limited GPU memory, this strategy reduces the imbalance of classes and forces the model to focus on regions around the interested pathology. It further improves segmentation accuracy and reduces the mis-classification of pathology. We evaluate our methods using the Myocardial pathology segmentation (MyoPS) combining the multi-sequence CMR dataset which involves three modalities. Extensive experiments demonstrate the effectiveness of the proposed model which outperforms the related baselines.

rate research

Read More

With the development of deep encoder-decoder architectures and large-scale annotated medical datasets, great progress has been achieved in the development of automatic medical image segmentation. Due to the stacking of convolution layers and the consecutive sampling operations, existing standard models inevitably encounter the information recession problem of feature representations, which fails to fully model the global contextual feature dependencies. To overcome the above challenges, this paper proposes a novel Transformer based medical image semantic segmentation framework called TransAttUnet, in which the multi-level guided attention and multi-scale skip connection are jointly designed to effectively enhance the functionality and flexibility of traditional U-shaped architecture. Inspired by Transformer, a novel self-aware attention (SAA) module with both Transformer Self Attention (TSA) and Global Spatial Attention (GSA) is incorporated into TransAttUnet to effectively learn the non-local interactions between encoder features. In particular, we also establish additional multi-scale skip connections between decoder blocks to aggregate the different semantic-scale upsampling features. In this way, the representation ability of multi-scale context information is strengthened to generate discriminative features. Benefitting from these complementary components, the proposed TransAttUnet can effectively alleviate the loss of fine details caused by the information recession problem, improving the diagnostic sensitivity and segmentation quality of medical image analysis. Extensive experiments on multiple medical image segmentation datasets of different imaging demonstrate that our method consistently outperforms the state-of-the-art baselines.
A number of methods based on deep learning have been applied to medical image segmentation and have achieved state-of-the-art performance. Due to the importance of chest x-ray data in studying COVID-19, there is a demand for state-of-the-art models capable of precisely segmenting soft tissue on the chest x-rays. The dataset for exploring best segmentation model is from Montgomery and Shenzhen hospital which had opened in 2014. The most famous technique is U-Net which has been used to many medical datasets including the Chest X-rays. However, most variant U-Nets mainly focus on extraction of contextual information and skip connections. There is still a large space for improving extraction of spatial features. In this paper, we propose a dual encoder fusion U-Net framework for Chest X-rays based on Inception Convolutional Neural Network with dilation, Densely Connected Recurrent Convolutional Neural Network, which is named DEFU-Net. The densely connected recurrent path extends the network deeper for facilitating contextual feature extraction. In order to increase the width of network and enrich representation of features, the inception blocks with dilation are adopted. The inception blocks can capture globally and locally spatial information from various receptive fields. At the same time, the two paths are fused by summing features, thus preserving the contextual and spatial information for decoding part. This multi-learning-scale model is benefiting in Chest X-ray dataset from two different manufacturers (Montgomery and Shenzhen hospital). The DEFU-Net achieves the better performance than basic U-Net, residual U-Net, BCDU-Net, R2U-Net and attention R2U-Net. This model has proved the feasibility for mixed dataset and approaches state-of-the-art. The source code for this proposed framework is public https://github.com/uceclz0/DEFU-Net.
The novel coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy. However, there is still lack of studies on effectively quantifying the lung infection caused by COVID-19. As a basic but challenging task of the diagnostic framework, segmentation plays a crucial role in accurate quantification of COVID-19 infection measured by computed tomography (CT) images. To this end, we proposed a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions. Specifically, we use the Aggregated Residual Transformations to learn a robust and expressive feature representation and apply the soft attention mechanism to improve the capability of the model to distinguish a variety of symptoms of the COVID-19. With a public CT image dataset, we validate the efficacy of the proposed algorithm in comparison with other competing methods. Experimental results demonstrate the outstanding performance of our algorithm for automated segmentation of COVID-19 Chest CT images. Our study provides a promising deep leaning-based segmentation tool to lay a foundation to quantitative diagnosis of COVID-19 lung infection in CT images.
In recent years, computer-aided diagnosis has become an increasingly popular topic. Methods based on convolutional neural networks have achieved good performance in medical image segmentation and classification. Due to the limitations of the convolution operation, the long-term spatial features are often not accurately obtained. Hence, we propose a TransClaw U-Net network structure, which combines the convolution operation with the transformer operation in the encoding part. The convolution part is applied for extracting the shallow spatial features to facilitate the recovery of the image resolution after upsampling. The transformer part is used to encode the patches, and the self-attention mechanism is used to obtain global information between sequences. The decoding part retains the bottom upsampling structure for better detail segmentation performance. The experimental results on Synapse Multi-organ Segmentation Datasets show that the performance of TransClaw U-Net is better than other network structures. The ablation experiments also prove the generalization performance of TransClaw U-Net.
Methods based on convolutional neural networks have improved the performance of biomedical image segmentation. However, most of these methods cannot efficiently segment objects of variable sizes and train on small and biased datasets, which are common in biomedical use cases. While methods exist that incorporate multi-scale fusion approaches to address the challenges arising with variable sizes, they usually use complex models that are more suitable for general semantic segmentation computer vision problems. In this paper, we propose a novel architecture called MSRF-Net, which is specially designed for medical image segmentation tasks. The proposed MSRF-Net is able to exchange multi-scale features of varying receptive fields using a dual-scale dense fusion block (DSDF). Our DSDF block can exchange information rigorously across two different resolution scales, and our MSRF sub-network uses multiple DSDF blocks in sequence to perform multi-scale fusion. This allows the preservation of resolution, improved information flow, and propagation of both high- and low-level features to obtain accurate segmentation maps. The proposed MSRF-Net allows to capture object variabilities and provides improved results on different biomedical datasets. Extensive experiments on MSRF-Net demonstrate that the proposed method outperforms most of the cutting-edge medical image segmentation state-of-the-art methods. MSRF-Net advances the performance on four publicly available datasets, and also, MSRF-Net is more generalizable as compared to state-of-the-art methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا