Whitham modulation theory for generalized Whitham equations and a general criterion for modulational instability


Abstract in English

The Whitham equation was proposed as a model for surface water waves that combines the quadratic flux nonlinearity $f(u) = tfrac{1}{2}u^2$ of the Korteweg-de Vries equation and the full linear dispersion relation $Omega(k) = sqrt{ktanh k}$ of uni-directional gravity water waves in suitably scaled variables. This paper proposes and analyzes a generalization of Whithams model to unidirectional nonlinear wave equations consisting of a general nonlinear flux function $f(u)$ and a general linear dispersion relation $Omega(k)$. Assuming the existence of periodic traveling wave solutions to this generalized Whitham equation, their slow modulations are studied in the context of Whitham modulation theory. A multiple scales calculation yields the modulation equations, a system of three conservation laws that describe the slow evolution of the periodic traveling waves wavenumber, amplitude, and mean. In the weakly nonlinear limit, explicit, simple criteria in terms of general $f(u)$ and $Omega(k)$ establishing the strict hyperbolicity and genuine nonlinearity of the modulation equations are determined. This result is interpreted as a generalized Lighthill-Whitham criterion for modulational instability.

Download