Do you want to publish a course? Click here

On the origin of a rotating metal-poor stellar population in the Milky Way Nuclear Cluster

122   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the origin of a population of stars recently detected in the inner parsec of the Milky Way Nuclear Cluster (NC), which exhibit sub-solar metallicity and a higher rotation compared to the dominant population. Using state-of-the-art $N$-body simulations, we model the infall of a massive stellar system into the Galactic center, both of Galactic and extra-galactic origin. We show that the newly discovered population can either be the remnant of a massive star cluster formed a few kpc away from the Galactic center (Galactic scenario) or be accreted from a dwarf galaxy originally located at 10-100 kpc (extragalactic scenario) and that reached the Galactic center 3-5 Gyr ago. A comparison between our models and characteristic Galactocentric distance and metallicity distributions of Milky Way satellites and globular clusters favours the Galactic scenario. A comparison with clusters associated with the Enceladus-Sausage, Sequoia, Sagittarius and Canis Major structures suggests that the progenitor of the observed metal-poor substructure formed in-situ rather than being accreted.



rate research

Read More

We use Gaia DR2 astrometric and photometric data, published radial velocities and MESA models to infer distances, orbits, surface gravities, and effective temperatures for all ultra metal-poor stars ($FeH<-4.0$ dex) available in the literature. Assuming that these stars are old ($>11Gyr$) and that they are expected to belong to the Milky Way halo, we find that these 42 stars (18 dwarf stars and 24 giants or sub-giants) are currently within $sim20kpc$ of the Sun and that they map a wide variety of orbits. A large fraction of those stars remains confined to the inner parts of the halo and was likely formed or accreted early on in the history of the Milky Way, while others have larger apocentres ($>30kpc$), hinting at later accretion from dwarf galaxies. Of particular interest, we find evidence that a significant fraction of all known UMP stars ($sim26$%) are on prograde orbits confined within $3kpc$ of the Milky Way plane ($J_z < 100 kms kpc$). One intriguing interpretation is that these stars belonged to the massive building block(s) of the proto-Milky Way that formed the backbone of the Milky Way disc. Alternatively, they might have formed in the early disc and have been dynamically heated, or have been brought into the Milky Way by one or more accretion events whose orbit was dragged into the plane by dynamical friction before disruption. The combination of the exquisite Gaia DR2 data and surveys of the very metal-poor sky opens an exciting era in which we can trace the very early formation of the Milky Way.
We present a comprehensive study of massive young stellar objects (YSOs) in the metal-poor galaxy NGC 6822 using IRAC and MIPS data obtained from the {em Spitzer Space Telescope}. We find over 500 new YSO candidates in seven massive star-formation regions; these sources were selected using six colour-magnitude cuts. Via spectral energy distribution fitting to the data with YSO radiative transfer models we refine this list, identifying 105 high-confidence and 88 medium-confidence YSO candidates. For these sources we constrain their evolutionary state and estimate their physical properties. The majority of our YSO candidates are massive protostars with an accreting envelope in the initial stages of formation. We fit the mass distribution of the Stage I YSOs with a Kroupa initial mass function and determine a global star-formation rate of 0.039 $M_{odot} yr^{-1}$. This is higher than star-formation rate estimates based on integrated UV fluxes. The new YSO candidates are preferentially located in clusters which correspond to seven active high-mass star-formation regions which are strongly correlated with the 8 and 24 $mu$m emission from PAHs and warm dust. This analysis reveals an embedded high-mass star-formation region, Spitzer I, which hosts the highest number of massive YSO candidates in NGC 6822. The properties of Spitzer I suggest it is younger and more active than the other prominent H,{sc ii} and star-formation regions in the galaxy.
The first stars are predicted to have formed within 200 million years after the Big Bang, initiating the cosmic dawn. A true first star has not yet been discovered, although stars with tiny amounts of elements heavier than helium (metals) have been found in the outer regions (halo) of the Milky Way. The first stars and their immediate successors should, however, preferentially be found today in the central regions (bulges) of galaxies, because they formed in the largest over-densities that grew gravitationally with time. The Milky Way bulge underwent a rapid chemical enrichment during the first 1-2 billion years, leading to a dearth of early, metal-poor stars. Here we report observations of extremely metal-poor stars in the Milky Way bulge, including one star with an iron abundance about 10,000 times lower than the solar value without noticeable carbon enhancement. We confirm that the most metal-poor bulge stars are on tight orbits around the Galactic Centre, rather than being halo stars passing through the bulge, as expected for stars formed at redshifts greater than 15. Their chemical compositions are in general similar to typical halo stars of the same metallicity although intriguing differences exist, including lower abundances of carbon.
The Phoenix stellar stream has a low intrinsic dispersion in velocity and metallicity that implies the progenitor was probably a low mass globular cluster. In this work we use Magellan/MIKE high-dispersion spectroscopy of eight Phoenix stream red giants to confirm this scenario. In particular, we find negligible intrinsic scatter in metallicity ($sigma(mathrm{[Fe~II/H]}) = 0.04^{+0.11}_{-0.03}$) and a large peak-to-peak range in [Na/Fe] and [Al/Fe] abundance ratios, consistent with the light element abundance patterns seen in the most metal-poor globular clusters. However, unlike any other globular cluster, we also find an intrinsic spread in [Sr II/Fe] spanning $sim$1 dex, while [Ba II/Fe] shows nearly no intrinsic spread ($sigma(mathrm{[Ba~II/H]}) = {0.03}^{+0.10}_{-0.02}$). This abundance signature is best interpreted as slow neutron capture element production from a massive fast-rotating metal-poor star ($15-20 mathrm{M}_odot$, $v_mathrm{ini}/v_mathrm{crit} = 0.4$, $[mathrm{Fe/H}] = -3.8$). The low inferred cluster mass suggests the system would have been unable to retain supernovae ejecta, implying that any massive fast-rotating metal-poor star that enriched the interstellar medium must have formed and evolved before the globular cluster formed. Neutron capture element production from asymptotic giant branch stars or magneto-rotational instabilities in core-collapse supernovae provide poor fits to the observations. We also report one Phoenix stream star to be a lithium-rich giant ($A(mathrm{Li}) = 3.1 pm 0.1$). At $[mathrm{Fe/H}] = -2.93$ it is among the most metal-poor lithium-rich giants known.
We present a chemo-dynamical analysis of low-resolution ($R sim 1300$) spectroscopy of stars from the AAOmega Evolution of Galactic Structure (AEGIS) survey, focusing on two key populations of carbon-enhanced metal-poor (CEMP) stars within the disk system of the Milky Way: a mildly prograde population ($L_z < 1000,$kpc$,$km$,$s$^{-1}$) and a strongly prograde ($L_z > 1000,$kpc$,$km$,$s$^{-1}$) population. Based on their chemical and kinematic characteristics, and on comparisons with similar populations found in the recent literature, we tentatively associate the former with an ex-situ inner-halo population originating from either the $Gaia$ Sausage or $Gaia$-Enceladus. The latter population is linked to the metal-weak thick-disk (MWTD). We discuss their implications in the context of the formation history of the Milky Way.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا