No Arabic abstract
We investigate the possible formation of a Bose-Einstein condensed phase of pions in the early Universe at nonvanishing values of lepton flavor asymmetries. A hadron resonance gas model with pion interactions, based on first-principle lattice QCD simulations at nonzero isospin density, is used to evaluate cosmic trajectories at various values of electron, muon, and tau lepton asymmetries that satisfy the available constraints on the total lepton asymmetry. The cosmic trajectory can pass through the pion condensed phase if the combined electron and muon asymmetry is sufficiently large: $|l_e + l_{mu}| gtrsim 0.1$, with little sensitivity to the difference $l_e - l_mu$ between the individual flavor asymmetries. Future constraints on the values of the individual lepton flavor asymmetries will thus be able to either confirm or rule out the condensation of pions during the cosmic QCD epoch. We demonstrate that the pion condensed phase leaves an imprint both on the spectrum of primordial gravitational waves and on the mass distribution of primordial black holes at the QCD scale e.g. the black hole binary of recent LIGO event GW190521 can be formed in that phase.
We analyze the prospects for using gravitational waves produced in early universe phase transitions as a complementary probe of the flavor anomalies in B meson decays. We focus on the Left-Right SU(4) Model, for which the strength of the observed lepton universality violation and consistency with other experiments impose a vast hierarchy between the symmetry breaking scales. This leads to a multipeaked gravitational wave signature within the reach of upcoming gravitational wave detectors.
Displaced vertices at colliders, arising from the production and decay of long-lived particles, probe dark matter candidates produced via freeze-in. If one assumes a standard cosmological history, these decays happen inside the detector only if the dark matter is very light because of the relic density constraint. Here, we argue how displaced events could very well point to freeze-in within a non-standard early universe history. Focusing on the cosmology of inflationary reheating, we explore the interplay between the reheating temperature and collider signatures for minimal freeze-in scenarios. Observing displaced events at the LHC would allow to set an upper bound on the reheating temperature and, in general, to gather indirect information on the early history of the universe.
We show that simple Two Higgs Doublet models still provide a viable explanation for the matter-antimatter asymmetry of the Universe via electroweak baryogenesis, even after taking into account the recent order-of-magnitude improvement on the electron-EDM experimental bound by the ACME Collaboration. Moreover we show that, in the region of parameter space where baryogenesis is possible, the gravitational wave spectrum generated at the end of the electroweak phase transition is within the sensitivity reach of the future space-based interferometer LISA.
We study a Dark Matter (DM) model in which the dominant coupling to the standard model occurs through a neutrino-DM-scalar coupling. The new singlet scalar will generically have couplings to nuclei/electrons arising from renormalizable Higgs portal interactions. As a result the DM particle $X$ can convert into a neutrino via scattering on a target nucleus $mathcal{N}$: $ X + mathcal{N} rightarrow u + mathcal{N}$, leading to striking signatures at direct detection experiments. Similarly, DM can be produced in neutrino scattering events at neutrino experiments: $ u + mathcal{N} rightarrow X + mathcal{N}$, predicting spectral distortions at experiments such as COHERENT. Furthermore, the model allows for late kinetic decoupling of dark matter with implications for small-scale structure. At low masses, we find that COHERENT and late kinetic decoupling produce the strongest constraints on the model, while at high masses the leading constraints come from DM down-scattering at XENON1T and Borexino. Future improvement will come from CE$ u$NS data, ultra-low threshold direct detection, and rare kaon decays.
Using the quantum chromodynamics (QCD) equation of state (EoS) from lattice calculations we investigate effects from QCD on primordial gravitational waves (PGWs) produced during the inflationary era. We also consider different cases for vanishing and nonvanishing lepton asymmetry where the latter one is constrained by cosmic microwave background experiments. Our results show that there is up to a few percent deviation in the predicted gravitational wave background in the frequency range around the QCD transition ($10^{-10}- 10^{-7}$~Hz) for different lattice QCD EoSs, or at larger frequencies for nonvanishing lepton asymmetry using perturbative QCD. Future gravitational wave experiments with high enough sensitivity in the measurement of the amplitude of PGWs like SKA, EPTA, DECIGO and LISA can probe these differences and can shed light on the real nature of the cosmic QCD transition and the existence of a nonvanishing lepton asymmetry in the early universe.