An innovative strategy for the optimal design of planar frames able to resist to seismic excitations is here proposed. The procedure is based on genetic algorithms (GA) which are performed according to a nested structure suitable to be implemented in parallel computing on several devices. In particular, this solution foresees two nested genetic algorithms. The first one, named External GA, seeks, among a predefined list of profiles, the size of the structural elements of the frame which correspond to the most performing solution associated to the highest value of an appropriate fitness function. The latter function takes into account, among other considerations, of the seismic safety factor and the failure mode which are calculated by means of the second algorithm, named Internal GA. The details of the proposed procedure are provided and applications to the seismic design of two frames of different size are described.