Do you want to publish a course? Click here

Global optimization of tensor renormalization group using the corner transfer matrix

54   0   0.0 ( 0 )
 Added by Satoshi Morita
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A tensor network renormalization algorithm with global optimization based on the corner transfer matrix is proposed. Since the environment is updated by the corner transfer matrix renormalization group method, the forward-backward iteration is unnecessary, which is a time-consuming part of other methods with global optimization. In addition, a further approximation reducing the order of the computational cost of contraction for the calculation of the coarse-grained tensor is proposed. The computational time of our algorithm in two dimensions scales as the sixth power of the bond dimension while the higher-order tensor renormalization group and the higher-order second renormalization group methods have the seventh power. We perform benchmark calculations in the Ising model on the square lattice and show that the time-to-solution of the proposed algorithm is faster than that of other methods.



rate research

Read More

An algorithm of the tensor renormalization group is proposed based on a randomized algorithm for singular value decomposition. Our algorithm is applicable to a broad range of two-dimensional classical models. In the case of a square lattice, its computational complexity and memory usage are proportional to the fifth and the third power of the bond dimension, respectively, whereas those of the conventional implementation are of the sixth and the fourth power. The oversampling parameter larger than the bond dimension is sufficient to reproduce the same result as full singular value decomposition even at the critical point of the two-dimensional Ising model.
Variational approaches for the calculation of vibrational wave functions and energies are a natural route to obtain highly accurate results with controllable errors. However, the unfavorable scaling and the resulting high computational cost of standard variational approaches limit their application to small molecules with only few vibrational modes. Here, we demonstrate how the density matrix renormalization group (DMRG) can be exploited to optimize vibrational wave functions (vDMRG) expressed as matrix product states. We study the convergence of these calculations with respect to the size of the local basis of each mode, the number of renormalized block states, and the number of DMRG sweeps required. We demonstrate the high accuracy achieved by vDMRG for small molecules that were intensively studied in the literature. We then proceed to show that the complete fingerprint region of the sarcosyn-glycin dipeptide can be calculated with vDMRG.
We show a way to perform the canonical renormalization group (RG) prescription in tensor space: write down the tensor RG equation, linearize it around a fixed-point tensor, and diagonalize the resulting linearized RG equation to obtain scaling dimensions. The tensor RG methods have had a great success in producing accurate free energy compared with the conventional real-space RG schemes. However, the above-mentioned canonical procedure has not been implemented for general tensor-network-based RG schemes. We extend the success of the tensor methods further to extraction of scaling dimensions through the canonical RG prescription, without explicitly using the conformal field theory. This approach is benchmarked in the context of the Ising models in 1D and 2D. Based on a pure RG argument, the proposed method has potential applications to 3D systems, where the existing bread-and-butter method is inapplicable.
541 - Julian Rincon , D. J. Garcia , 2009
A distributed-memory parallelization strategy for the density matrix renormalization group is proposed for cases where correlation functions are required. This new strategy has substantial improvements with respect to previous works. A scalability analysis shows an overall serial fraction of 9.4% and an efficiency of around 60% considering up to eight nodes. Sources of possible parallel slowdown are pointed out and solutions to circumvent these issues are brought forward in order to achieve a better performance.
A calculation method for higher-order moments of physical quantities, including magnetization and energy, based on the higher-order tensor renormalization group is proposed. The physical observables are represented by impurity tensors. A systematic summation scheme provides coarse-grained tensors including multiple impurities. Our method is compared with the Monte Carlo method on the two-dimensional Potts model. While the nature of the transition of the $q$-state Potts model has been known for a long time owing to the analytical arguments, a clear numerical confirmation has been difficult due to extremely long correlation length in the weakly first-order transitions, e.g., for $q=5$. A jump of the Binder ratio precisely determines the transition temperature. The finite-size scaling analysis provides critical exponents and distinguishes the weakly first-order and the continuous transitions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا