No Arabic abstract
Studies of atmospheres of directly imaged exoplanets with high-resolution spectrographs have shown that their characterization is predominantly limited by noise on the stellar halo at the location of the studied exoplanet. An instrumental combination of high-contrast imaging and high spectral resolution that suppresses this noise and resolves the spectral lines can therefore yield higher quality spectra. We study the performance of the proposed HiRISE fiber coupling between the SPHERE and CRIRES+ at the VLT for spectral characterization of directly imaged planets. Using end-to-end simulations of HiRISE we determine the S/N of the detection of molecular species for known exoplanets in $H$ and $K$ bands, and compare them to CRIRES+. We investigate the ultimate detection limits of HiRISE as a function of stellar magnitude, and we quantify the impact of different coronagraphs and of the system transmission. We find that HiRISE largely outperforms CRIRES+ for companions around bright hosts like $beta$ Pic or 51 Eri. For an $H=3.5$ host, we observe a gain of a factor of up to 16 in observing time with HiRISE to reach the same S/N on a companion at 200 mas. More generally, HiRISE provides better performance than CRIRES+ in two-hour integration times between 50-350 mas for hosts with $H<8.5$ and between 50-700 mas for $H<7$. For fainter hosts like PDS 70 and HIP 65426, no significant improvements are observed. We find that using no coronagraph yields the best S/N when characterizing known exoplanets due to higher transmission and fiber-based starlight suppression. We demonstrate that the overall transmission of the system is in fact the main driver of performance. Finally, we show that HiRISE outperforms the best detection limits of SPHERE for bright stars, opening major possibilities for the characterization of future planetary companions detected by other techniques.
Atmospheric composition provides essential markers of the most fundamental properties of giant exoplanets, such as their formation mechanism or internal structure. New-generation exoplanet imagers, like VLT/SPHERE or Gemini/GPI, have been designed to achieve very high contrast (>15 mag) at small angular separations ($<$0.5as) for the detection of young giant planets in the near-infrared, but they only provide very low spectral resolutions ($R<100$) for their characterization. High-dispersion spectroscopy at resolutions up to $10^5$ is one of the most promising pathways for the detailed characterization of exoplanets, but it is currently out of reach for most directly imaged exoplanets because current high-dispersion spectrographs in the near-infrared lack coronagraphs to attenuate the stellar signal and the spatial resolution necessary to resolve the planet. Project HiRISE (High-Resolution Imaging and Spectroscopy of Exoplanets) ambitions to develop a demonstrator that will combine the capabilities of two flagship instruments installed on the ESO Very Large Telescope, the high-contrast exoplanet imager SPHERE and the high-resolution spectrograph CRIRES+, with the goal of answering fundamental questions on the formation, composition and evolution of young planets. In this work, we will present the project, the first set of realistic simulations and the preliminary design of the fiber injection unit that will be implemented in SPHERE.
Recently, we presented the detection of carbon monoxide in the transmission spectrum of extrasolar planet HD209458b, using CRIRES, the Cryogenic high-resolution Infrared Echelle Spectrograph at ESOs Very Large Telescope (VLT). The high spectral resolution observations (R=100,000) provide a wealth of information on the planets orbit, mass, composition, and even on its atmospheric dynamics. The new observational strategy and data analysis techniques open up a whole world of opportunities. We therefore started an ESO large program using CRIRES to explore these, targeting both transiting and non-transiting planets in carbon monoxide, water vapour, and methane. Observations of the latter molecule will also serve as a test-bed for METIS, the proposed mid-infrared imager and spectrograph for the European Extremely Large Telescope.
The SHINE project is a 500-star survey performed with SPHERE on the VLT for the purpose of directly detecting new substellar companions and understanding their formation and early evolution. Here we present an initial statistical analysis for a subsample of 150 stars that are representative of the full SHINE sample. Our goal is to constrain the frequency of substellar companions with masses between 1 and 75 MJup and semimajor axes between 5 and 300 au. We adopt detection limits as a function of angular separation from the survey data for all stars converted into mass and projected orbital separation using the BEX-COND-hot evolutionary tracks and known distance to each system. Based on the results obtained for each star and on the 13 detections in the sample, we use a MCMC tool to compare our observations to two different types of models. The first is a parametric model based on observational constraints, and the second type are numerical models that combine advanced core accretion and gravitational instability planet population synthesis. Using the parametric model, we show that the frequencies of systems with at least one substellar companion are $23.0_{-9.7}^{+13.5}%$, $5.8_{-2.8}^{+4.7}%$, and $12.6_{-7.1}^{+12.9}%$ for BA, FGK, and M stars, respectively. We also demonstrate that a planet-like formation pathway probably dominates the mass range from 1-75 MJup for companions around BA stars, while for M dwarfs, brown dwarf binaries dominate detections. In contrast, a combination of binary star-like and planet-like formation is required to best fit the observations for FGK stars. Using our population model and restricting our sample to FGK stars, we derive a frequency of $5.7_{-2.8}^{+3.8}%$, consistent with predictions from the parametric model. More generally, the frequency values that we derive are in excellent agreement with values obtained in previous studies.
The upcoming Extremely Large Telescopes (ELTs) are expected to have the collecting area required to detect potential biosignature gases in the atmosphere of rocky planets around nearby low-mass stars. Some efforts are currently focusing on searching for molecular oxygen (O2), since O2 is a known biosignature on Earth. One of the most promising methods to search for O2 is transmission spectroscopy in which high-resolution spectroscopy is combined with cross-correlation techniques. In this method, high spectral resolution is required both to resolve the exoplanets O2 lines and to separate them from foreground telluric absorption. While current astronomical spectrographs typically achieve a spectral resolution of 100,000, recent studies show that resolutions of 300,000 -- 400,000 are optimal to detect O2 in the atmosphere of earth analogs with the ELTs. Fabry Perot Interferometer (FPI) arrays have been proposed as a relatively low-cost way to reach these resolutions. In this paper, we present performance results for our 2-FPI array lab prototype, which reaches a resolving power of 600,000. We further discuss the use of multi-cavity etalons (dualons) to be resolution boosters for existing spectrographs.
Pandora is a SmallSat mission designed to study the atmospheres of exoplanets, and was selected as part of NASAs Astrophysics Pioneers Program. Transmission spectroscopy of transiting exoplanets provides our best opportunity to identify the makeup of planetary atmospheres in the coming decade. Stellar brightness variations due to star spots, however, can impact these measurements and contaminate the observed spectra. Pandoras goal is to disentangle star and planet signals in transmission spectra to reliably determine exoplanet atmosphere compositions. Pandora will collect long-duration photometric observations with a visible-light channel and simultaneous spectra with a near-IR channel. The broad-wavelength coverage will provide constraints on the spot and faculae covering fractions of low-mass exoplanet host stars and the impact of these active regions on exoplanetary transmission spectra. Pandora will subsequently identify exoplanets with hydrogen- or water-dominated atmospheres, and robustly determine which planets are covered by clouds and hazes. Pandora will observe at least 20 exoplanets with sizes ranging from Earth-size to Jupiter-size and host stars spanning mid-K to late-M spectral types. The project is made possible by leveraging investments in other projects, including an all-aluminum 0.45-meter Cassegrain telescope design, and a NIR sensor chip assembly from the James Webb Space Telescope. The mission will last five years from initial formulation to closeout, with one-year of science operations. Launch is planned for the mid-2020s as a secondary payload in Sun-synchronous low-Earth orbit. By design, Pandora has a diverse team, with over half of the mission leadership roles filled by early career scientists and engineers, demonstrating the high value of SmallSats for developing the next generation of space mission leaders.