No Arabic abstract
Thermal energy can be conducted by different mechanisms including by single particles or collective excitations. Thermal conductivity is system-specific and shows a richness of behaviors currently explored in different systems including insulators, strange metals and cuprate superconductors. Here, we show that despite the seeming complexity of thermal transport, the thermal diffusivity $alpha$ of liquids and supercritical fluids has a lower bound which is fixed by fundamental physical constants for each system as $alpha_m=frac{1}{4pi}frac{hbar}{sqrt{m_em}}$, where $m_e$ and $m$ are electron and molecule masses. The newly introduced elementary thermal diffusivity has an absolute lower bound dependent on $hbar$ and the proton-to-electron mass ratio only. We back up this result by a wide range of experimental data. We also show that theoretical minima of $alpha$ coincide with the fundamental lower limit of kinematic viscosity $ u_m$. Consistent with experiments, this points to a universal lower bound for two distinct properties, energy and momentum diffusion, and a surprising correlation between the two transport mechanisms at their minima. We observe that $alpha_m$ gives the minimum on the phase diagram except in the vicinity of the critical point, whereas $ u_m$ gives the minimum on the entire phase diagram.
The mechanism of diffusion in supercooled liquids is investigated from the potential energy landscape point of view, with emphasis on the crossover from high- to low-T dynamics. Molecular dynamics simulations with a time dependent mapping to the associated local mininum or inherent structure (IS) are performed on unit-density Lennard-Jones (LJ). New dynamical quantities introduced include r2_{is}(t), the mean-square displacement (MSD) within a basin of attraction of an IS, R2(t), the MSD of the IS itself, and g_{loc}(t) the mean waiting time in a cooperative region. At intermediate T, r2_{is}(t) posesses an interval of linear t-dependence allowing calculation of an intrabasin diffusion constant D_{is}. Near T_{c} diffusion is intrabasin dominated with D = D_{is}. Below T_{c} the local waiting time tau_{loc} exceeds the time, tau_{pl}, needed for the system to explore the basin, indicating the action of barriers. The distinction between motion among the IS below T_{c} and saddle, or border dynamics above T_{c} is discussed.
Linear programming (polynomial) techniques are used to obtain lower and upper bounds for the potential energy of spherical designs. This approach gives unified bounds that are valid for a large class of potential functions. Our lower bounds are optimal for absolutely monotone potentials in the sense that for the linear programming technique they cannot be improved by using polynomials of the same or lower degree. When additional information about the structure (upper and lower bounds for the inner products) of the designs is known, improvements on the bounds are obtained. Furthermore, we provide `test functions for determining when the linear programming lower bounds for energy can be improved utilizing higher degree polynomials. We also provide some asymptotic results for these energy bounds.
The open dynamics of quantum many-body systems involve not only the exchange of energy, but also of other conserved quantities, such as momentum. This leads to additional decoherence, which may have a profound impact in the dynamics. Motivated by this, we consider a many-body system subject to total momentum dephasing and show that under very general conditions this leads to a diffusive component in the dynamics of any local density, even far from equilibrium. Such component will usually have an intricate interplay with the unitary dynamics. To illustrate this, we consider the case of a superfluid and show that momentum dephasing introduces a damping in the sound-wave dispersion relation, similar to that predicted by the Navier-Stokes equation for ordinary fluids. Finally, we also study the effects of dephasing in linear response, and show that it leads to a universal additive contribution to the diffusion constant, which can be obtained from a Kubo formula.
The self-diffusion constant D is expressed in terms of transitions among the local minima of the potential (inherent structure, IS) and their correlations. The formulae are evaluated and tested against simulation in the supercooled, unit-density Lennard-Jones liquid. The approximation of uncorrelated IS-transition (IST) vectors, D_{0}, greatly exceeds D in the upper temperature range, but merges with simulation at reduced T ~ 0.50. Since uncorrelated IST are associated with a hopping mechanism, the condition D ~ D_{0} provides a new way to identify the crossover to hopping. The results suggest that theories of diffusion in deeply supercooled liquids may be based on weakly correlated IST.
We study bounds on ratios of fluctuations in steady-state time-reversal heat engines controlled by multi affinities. In the linear response regime, we prove that the relative fluctuations (precision) of the output current (power) is always lower-bounded by the relative fluctuations of the input current (heat current absorbed from the hot bath). As a consequence, the ratio between the fluctuations of the output and input currents are bounded both from above and below, where the lower (upper) bound is determined by the square of the averaged efficiency (square of the Carnot efficiency) of the engine. The saturation of the lower bound is achieved in the tight-coupling limit when the determinant of the Onsager response matrix vanishes. Our analysis can be applied to different operational regimes, including engines, refrigerators, and heat pumps. We illustrate our findings in two types of continuous engines: two-terminal coherent thermoelectric junctions and three-terminal quantum absorption refrigerators. Numerical simulations in the far-from-equilibrium regime suggest that these bounds apply more broadly, beyond linear response.