Do you want to publish a course? Click here

HACCLE: An Ecosystem for Building Secure Multi-Party Computations

71   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Cryptographic techniques have the potential to enable distrusting parties to collaborate in fundamentally new ways, but their practical implementation poses numerous challenges. An important class of such cryptographic techniques is known as secure multi-party computation (MPC). In an effort to provide an ecosystem for building secure MPC applications using higher degrees of automation, we present the HACCLE (High Assurance Compositional Cryptography: Languages and Environments) toolchain. The HACCLE toolchain contains an embedded domain-specific language (Harpoon) for software developers without cryptographic expertise to write MPC-based programs. Harpoon programs are compiled into acyclic circuits represented in HACCLEs Intermediate Representation (HIR) that serves as an abstraction for implementing a computation using different cryptographic protocols such as secret sharing, homomorphic encryption, or garbled circuits. Implementations of different cryptographic protocols serve as different backends of our toolchain. The extensible design of HIR allows cryptographic experts to plug in new primitives and protocols to realize computations.We have implemented HACCLE, and used it to program interesting algorithms and applications (e.g., secure auction, matrix-vector multiplication, and merge sort). We show that the performance is improved by using our optimization strategies and heuristics.



rate research

Read More

The purpose of Secure Multi-Party Computation is to enable protocol participants to compute a public function of their private inputs while keeping their inputs secret, without resorting to any trusted third party. However, opening the public output of such computations inevitably reveals some information about the private inputs. We propose a measure generalising both Renyi entropy and g-entropy so as to quantify this information leakage. In order to control and restrain such information flows, we introduce the notion of function substitution which replaces the computation of a function that reveals sensitive information with that of an approximate function. We exhibit theoretical bounds for the privacy gains that this approach provides and experimentally show that this enhances the confidentiality of the inputs while controlling the distortion of computed output values. Finally, we investigate the inherent compromise between accuracy of computation and privacy of inputs and we demonstrate how to realise such optimal trade-offs.
Elaborate protocols in Secure Multi-party Computation enable several participants to compute a public function of their own private inputs while ensuring that no undesired information leaks about the private inputs, and without resorting to any trusted third party. However, the public output of the computation inevitably leaks some information about the private inputs. Recent works have introduced a framework and proposed some techniques for quantifying such information flow. Yet, owing to their complexity, those methods do not scale to practical situations that may involve large input spaces. The main contribution of the work reported here is to formally investigate the information flow captured by the min-entropy in the particular case of secure three-party computations of affine functions in order to make its quantification scalable to realistic scenarios. To this end, we mathematically derive an explicit formula for this entropy under uniform prior beliefs about the inputs. We show that this closed-form expression can be computed in time constant in the inputs sizes and logarithmic in the coefficients of the affine function. Finally, we formulate some theoretical bounds for this privacy leak in the presence of non-uniform prior beliefs.
Federated machine learning systems have been widely used to facilitate the joint data analytics across the distributed datasets owned by the different parties that do not trust each others. In this paper, we proposed a novel Gradient Boosting Machines (GBM) framework SecureGBM built-up with a multi-party computation model based on semi-homomorphic encryption, where every involved party can jointly obtain a shared Gradient Boosting machines model while protecting their own data from the potential privacy leakage and inferential identification. More specific, our work focused on a specific dual--party secure learning scenario based on two parties -- both party own an unique view (i.e., attributes or features) to the sample group of samples while only one party owns the labels. In such scenario, feature and label data are not allowed to share with others. To achieve the above goal, we firstly extent -- LightGBM -- a well known implementation of tree-based GBM through covering its key operations for training and inference with SEAL homomorphic encryption schemes. However, the performance of such re-implementation is significantly bottle-necked by the explosive inflation of the communication payloads, based on ciphertexts subject to the increasing length of plaintexts. In this way, we then proposed to use stochastic approximation techniques to reduced the communication payloads while accelerating the overall training procedure in a statistical manner. Our experiments using the real-world data showed that SecureGBM can well secure the communication and computation of LightGBM training and inference procedures for the both parties while only losing less than 3% AUC, using the same number of iterations for gradient boosting, on a wide range of benchmark datasets.
148 - Jinbao Zhu , Qifa Yan , 2021
This paper investigates the problem of Secure Multi-party Batch Matrix Multiplication (SMBMM), where a user aims to compute the pairwise products $mathbf{A}divideontimesmathbf{B}triangleq(mathbf{A}^{(1)}mathbf{B}^{(1)},ldots,mathbf{A}^{(M)}mathbf{B}^{(M)})$ of two batch of massive matrices $mathbf{A}$ and $mathbf{B}$ that are generated from two sources, through $N$ honest but curious servers which share some common randomness. The matrices $mathbf{A}$ (resp. $mathbf{B}$) must be kept secure from any subset of up to $X_{mathbf{A}}$ (resp. $X_mathbf{B}$) servers even if they collude, and the user must not obtain any information about $(mathbf{A},mathbf{B})$ beyond the products $mathbf{A}divideontimesmathbf{B}$. A novel computation strategy for single secure matrix multiplication problem (i.e., the case $M=1$) is first proposed, and then is generalized to the strategy for SMBMM by means of cross subspace alignment. The SMBMM strategy focuses on the tradeoff between recovery threshold (the number of successful computing servers that the user needs to wait for), system cost (upload cost, the amount of common randomness, and download cost) and system complexity (encoding, computing, and decoding complexities). Notably, compared with the known result by Chen et al., the strategy for the degraded case $X= X_{mathbf{A}}=X_{mathbf{B}}$ achieves better recovery threshold, amount of common randomness, download cost and decoding complexity when $X$ is less than some parameter threshold, while the performance with respect to other measures remain identical.
We consider the task of secure multi-party distributed quantum computation on a quantum network. We propose a protocol based on quantum error correction which reduces the number of necessary qubits. That is, each of the $n$ nodes in our protocol requires an operational workspace of $n^2 + 4n$ qubits, as opposed to previously shown $Omegabig((n^3+n^2s^2)log nbig)$ qubits, where $s$ is a security parameter. Additionally, we reduce the communication complexity by a factor of $mathcal{O}(n^3log(n))$ qubits per node, as compared to existing protocols. To achieve universal computation, we develop a distributed procedure for verifying magic states, which allows us to apply distributed gate teleportation and which may be of independent interest. We showcase our protocol on a small example for a 7-node network.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا